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Abstract
Confusion is an emotion, which may occur when the learner is confronting inconsistence between new knowledge and exist-
ing cognitive structure, or reasoning for solving the puzzle and problem. Although confusion is not pleasant, it is necessary 
for the learner to engage in understanding and deep learning. Consequently, confusion assessment has attracted increased 
interest in e-learning. However, current studies have targeted no further than engagement detection and measurement, while 
there is lack of studies in investigating cognitive and emotional aspects beyond engagement in the context of game-based 
learning. To quantify confused states in logic reasoning in game-based learning, we propose an EEG-based methodology 
for assessing the user’s confusion using the OpenBCI device with 8 channels. In the complicated context of game play, it is 
difficult, and sometimes impossible, to collect the ground truth of the data in real tasks. To solve this issue, this work lever-
ages cross-task and cross-subject methods to build a classifier, that is, training on the data of one standardized cognitive test 
paradigm (Raven’s test) and testing on the data of real tasks in game play (Sokoban Game). It provides a new possibility 
to create a classifier based on a small dataset. We also employ the end-to-end algorithm of deep learning in machine learn-
ing. Results showed the feasibility of this proposal in the task variation of the classifier, with an accuracy of 91.04%. The 
proposed EEG-based methodology is suitable to analyze learners’ confusion on the long game-play duration and has a good 
adaption in real tasks.

Keywords Educational game · Game-based learning · Electroencephalography (EEG) · Assessment · Confusion · Machine 
learning

1 Introduction

Educational games refers to games designed for a primary 
purpose of pedagogy rather than pure entertainment, which 
provides learners plenty of opportunities to put into practice 
what they have learned in a game-based context, supports 

the development of cognitive, practical, and social skills [18, 
22, 29, 33], and involves the activities of problem-solving 
and competition. Although digital learning provides students 
an environment supporting them to develop cognitive skills, 
there is still a lack of understanding about how games foster 
such skills. Finding an effective methodology that detects 
affective and cognitive processes of students during game 
learning can pinpoint whether these games offer the settings 
with the appropriate difficulty levels, satisfy requirements 
of learning, and achieve the initial pedagogical objectives.

Assessment after learning in a game-based environment 
often concentrates on the outcome or performance [1, 51]. 
Such assessment methods may neglect changes during the 
learning process, which are mainly related to cognitive and 
affective processes. In recent years, physiological measures 
have drawn attention to game play assessment with respect 
to cognitive aspects [48]; most notably, EEG-based measure-
ments have potentials and benefits distinguished from others 
[49]. EEG technology provides a direct means for internal 
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brain activity detection, revealing patterns of the internal 
states of the brain, compared with other recognition methods 
of cognitive states which are based on facial expression pat-
terns using computer vision technology. Also, it has a good 
temporal resolution, which can be used for real-time detec-
tion in real tasks without distracting students, as compared 
with self-reports. Due to these bright prospects, EEG-based 
recognition methods of mental states have gained increased 
focus. With the emergence of portable commercial head-
mounted devices for raw EEG data acquisition like Emotiv 
EPOC, NeuroSky MindWave, and OpenBCI 3D printed 
devices, such technology has been considered to measure 
and analyze the learner’s engagement in educational games.

Engagement is regarded as a mediator between students’ 
emotions and their achievement, which is categorized into 
five types including cognitive, motivational, behavioral, cog-
nitive-behavioral, and social-behavioral engagement [32]. 
It is considered as the cognitive process related to attention 
(cognitive engagement) [43] and also as a main motivation 
indicator [37, 38]. Studies on such EEG-based evaluation 
tools so far have mainly targeted engagement (motivational 
engagement) detection [12, 13], while there is a lack of stud-
ies in investigating cognitive and emotional aspects beyond 
engagement.

Among those cognitive skills that the game supports, 
rules induction and reasoning skills are advanced skills, cru-
cial for deep learning [2]. Confusion is an emotion, which 
is provoked due to the cognitive disequilibrium in learning 
[14]. It occurs when the individual’s current cognitive struc-
ture is inconsistent with the new coming information [10], or 
when s/he is unable to move further while doing rule-based 
reasoning or solving a puzzle [36]. Once the learner fails to 
solve the puzzle and stays in confusion for a long time, s/he 
will fall into frustration and then boredom. Although confu-
sion is unpleasant, it can foster the individual to engage in a 
high level and reflect. It has been proved that learners who 
are confused would be more vigilant and process the mate-
rial at deeper levels of comprehension than learners who are 
not confused [25]. Therefore, measuring confusion paves 
the way for monitoring learner’s internal reaction in the pro-
cess of solving the problem and could be used to inform the 
design of educational games or game-based learning when 
adjusting the setting of difficulty appropriately.

When measuring confusion in educational games using 
machine learning techniques, there will be one issue that one 
may encounter: it is difficult, and sometimes impossible, to 
make the ground truth, namely class labels, of the data in 
real tasks, when the user is playing the game. The answers in 
the self-report or questionnaire are often used to obtain class 
labels. For example, in the work of [27, 30, 50], answers 
of the Self-Assessment Manikin [5] were used to give the 
ground truth, or in another common way, the ground truth 
was obtained based on types of stimuli. These methods of 

collecting labels are more appropriate for short-time tasks 
in standardized experiments rather than long-time real tasks 
like in educational games. In educational game play, it is 
common for learners to solve the puzzle spending thirty min-
utes or even more time. It is inappropriate to assign a label to 
a piece of EEG data during such long time. One of the pos-
sible solutions is to segment the data into small pieces of few 
seconds and assign one label to each piece of data. However, 
letting participants to segment the process of puzzle solv-
ing and identify their cognitive states for each piece of data 
would not only increase the labor cost to assign labels and 
check, but also introduce more errors. The assigned labels in 
this way may not be the ground truth. In an attempt to solve 
these issues, in this study, we addressed the key research 
question as follows: Is it feasible to leverage a cross-task and 
cross-subject method to build the classifier for detection of 
confusion in the educational game or game-based learning?

In this paper, we propose a novel EEG-based method-
ology to detect confusion in the context of game-based 
learning and demonstrate its advantages. We collect EEG 
time-series from the OpenBCI device with 8 channels and 
leverage a cross-task and cross-subject method to build a 
classifier based on machine learning, that is, training on the 
data collecting from one standardized cognitive test para-
digm (Raven’s test) and testing on the data from real tasks in 
the game play (Sokoban Game). Results showed the robust-
ness of this proposal in the task variation of the classifier, 
with the accuracy up to 91.04%. The proposed EEG-based 
methodology is suitable to detect learners’ confusion on the 
long game-play duration.

Addressing the problems as we stated above, the main 
contributions of this study are as follows:

• This work proposes detecting confusion states of students 
in the play of digital educational games, and we discuss 
the necessity and significance of confusion detection in 
educational game play. The EEG-based methodology that 
we proposed can recognize students’ confusion in game-
based learning when they are doing logic reasoning;

• With respect to the assessment of the game, this work 
proposes using EEG-based technology, revealing the 
internal states of brain directly and having a potential of 
supporting real-time detection due to the good temporal 
resolution;

• This work proposes leveraging a cross-task and cross-
subject method to build a classifier based on machine 
learning, that is, training on the data collecting from 
one standardized cognitive test paradigm (Raven’s test) 
and testing on the data from real tasks in the game play 
(Sokoban Game). Results showed the robustness of this 
proposal in the task variation of the classifier. Further-
more, end-to-end learning is proposed to decode confu-
sion states from raw EEG data, which offers the benefit 
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of not considering handcrafted features. In this paper, we 
also describe how to design and train deep learning with 
convolutional neutral networks.

The rest of the paper is organized as follows: We briefly 
review the assessment of educational games, theories of con-
fusion and machine learning approaches in EEG-based clas-
sification in Sect. 2. We discuss the proposed methodology 
and the architecture of building the classifier for detecting 
confusion states in educational games based on end-to-end 
learning approach in Sect. 3 and the design and setup of the 
experiment in Sect. 4. We present and discuss the results in 
Sect. 5, and the limitations and challenges of EEG-based 
brain–computer interfaces (BCI) in education in Sect. 6. In 
Sect. 7, we conclude proposing future research objectives.

2  Related work

In this section, we summarize and discuss the research work 
inspiring our proposal of detecting confusion states in edu-
cational game using EEG-based methodology and machine 
learning. First, we present studies on genres of educational 
games, skills that games offer, and the assessment in game-
based learning. Then, we discuss the recent research on the 
theories of confusion, existing detection methods, and dif-
ficulties in confusion induction. Finally, we survey EEG-
based detection methods and the endeavors in transferring 
advances from machine learning to EEG analysis.

2.1  Assessment of educational games

Educational games encompass a variety of genres that can 
be categorized based on the levels of psychological engage-
ment [7]. Rapid response games, involving low levels of psy-
chological engagement, are well suited for automated skills 
training through repeated practice. However, the goal of a 
large amount of educational games, involving high levels of 
psychological engagement, is learning of cognitive skills 
[33]. These games provide the activities supporting deep 
learning [17], including reasoning, problem-solving, and 
decision making. An effective educational game must align 
with learning goals, activities, feedback, interfaces, and the 
desired instructional outcomes [7]. Once the game elements 
are antagonistic to the learning objectives, the intended 
learning will not occur. To ensure a good design requires 
not only validated measures of learning outcomes, but also 
assessment methods to detect changes during the learning 
process in order to determine which design elements work 
best, when, and why. Therefore, rather than a final outcome 
or performance, learning emotions and cognitive aspects 

measurement and assessment can expose changes during 
the learning process.

Different methodologies revolving around the measure-
ment and assessment of emotions and cognitive aspects in 
learning have been proposed and studied, and include five 
types [49] according to the measuring techniques: self-
reported measures, observer’s reports, behavior detection, 
interactions, and physiological measures.

Self-reported measures and observer’s reports are sub-
jective methods, while behavior detection, interactions, 
and physiological measures are objective methods [49]. 
The self-reported measures are commonly based on the 
questionnaire, subjectively collecting learners’ attitudes, 
opinions, thoughts, etc., which are filled out during or 
after tasks. When collecting the data during tasks, these 
measures might interrupt the playing or performing tasks. 
Among those scales used in self-reports for assessing emo-
tions, Self-Assessment Manikin (SAM) [5] scales have been 
widely used to assess emotions on the affective valence and 
arousal dimensions. SAM is a nonverbal design assessment 
based on pictorial rating, the studies of which found that 
subjects selected the emotion level faster and more directly 
using SAM than verbal scales. Observer’s reports refer to 
reporting the learner’s affective or cognitive states through 
the observation of another person rather than the learner, 
which are usually based on reading facial expression of the 
learner from videos [20]. Most of self-reported measures 
and observer’s reports are the assessment after learning in a 
game-based environment, which may neglect changes and 
variation related to cognitive and affective processes during 
the learning process.

Behavior detection methods refer to recognition of 
facial expression, gestures and postures, speech and voice, 
eye tracking and gaze, etc. In e-learning and educational 
games, facial expressions recognition based on computer 
vision technologies is one of the most important measures 
and has been used commonly. Facial expressions expose the 
internal patterns of brain activity and are considered to have 
connection with emotions and cognitive states. For example, 
Whitehill et al. [47] studied whether human observers can 
reliably judge engagement from the face and analyzed the 
signals that observers use to make these judgments. They 
explored approaches for automatic recognition of engage-
ment from students’ facial expressions and found that auto-
mated engagement binary classification (two levels: high 
and low) performed with comparable accuracy to humans. 
Interactions methodologies are based on the analysis of 
interactions of learners, such as typing speed and semantic 
analysis of assignment.

Physiological measures are based on the recording and 
analyzing physiological signals, which detect emotions and 
cognitive states in an objective way. Physiological meas-
ures like electroencephalograph (EEG), near infrared (NIR), 
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galvanic skin response (GSR), blood volume pulse (BVP) 
have good temporal resolution, while functional magnetic 
resonance imaging (fMRI) technology has good spatial 
resolution with respect to detecting and analyzing mental 
states. Physiological measures are leveraged commonly with 
self-reporting questionnaires. The data of self-reporting 
questionnaires include three facets: (1) to be used as ground 
truth when processing physiological signals [28, 45, 50], 
(2) to be compared with recognition results of physiological 
methods [45], and (3) to be used together with physiological 
signals for analyzing [6]. Wang et al. [45] employed Massive 
Open Online Courses video clips as the confusion stimuli 
to build a classification model to classify whether the stu-
dent is confused or not when watching the course material, 
with an accuracy around 60%. Results from the question-
naire showed that the stimuli were supposed to be confusing 
but participants found them not confusing, which might be 
one of main reasons that the classification model was not 
well performed. In [6], Chanel et al. proposed an approach 
to maintain player engagement by adapting game difficulty 
according to the player’s emotions assessed from physiologi-
cal signals. They analyzed the questionnaire responses, EEG 
signals, peripheral signals (including GSR, BVP, heart rate, 
chest cavity expansion, and skin temperature) of the players 
playing a Tetris game at three difficulty levels and obtained a 
classification accuracy of 63% with fusing two EEG signals 
and peripheral signals.

2.2  Confusion in learning

Understanding confusion in learning theoretically and 
empirically has been the focus in recent years. In some 
related research work, confusion has been considered as an 
emotion. D’Mello et al. regarded confusion as a knowledge 
or an epistemic emotion that occurs during complex learn-
ing tasks [10]; the similar argument can also be found in 
[32, 40]. A few works considered confusion as non-affective 
feeling although it has characteristic feeling or experien-
tial aspects [8]. A learner may experience confusion as an 
affect response to the cognitive processing of information 
[32]. It occurs as feedback when the individual is unable 
to move further. One instance of confusion is that existing 
cognitive structure is inconsistent with the new information 
[10]. Another common instance is that the individual cannot 
infer the rules when doing rule-based reasoning or solving a 
puzzle [36]. Instances or scenarios of confusion show differ-
ence [10]; thus, the stimulus should be carefully designed to 
conform to the target instances or scenarios.

On the one hand, although confusion is unpleasant, it can 
foster the individual to engage in a high level of learning and 
reflect profoundly. It has been proved that learners who are 
confused would be more vigilant and process the material 
at deeper levels of comprehension than learners who are not 

confused [25]. On the other hand, once the learner fails to 
solve the puzzle and stays in confusion for a long time, s/he 
will fall into frustration and then boredom [9]. Therefore, 
measuring confusion paves the way for monitoring the learn-
er’s internal reaction in the process of solving the problem 
and could be used for informing the design of educational 
games when adjusting the setting of difficulty appropriately.

In the study of confusion detection, confusion induction 
is a daunting task, which should be considered carefully. 
The appropriate induction determines the success of clas-
sification. Although researchers endeavored to induce the 
emotion accurately, the gap between pre-assigned stimulus 
and induced emotions still exists. In the work of [45], Wang 
et al. employed Massive Open Online Courses video clips 
as stimulus to evoke confused or non-confused states of stu-
dents. After the experiment, they found stimulus materials 
were supposed to be confusing but participants found them 
not confusing. Besides, the observers who gave the labels for 
training classifier were not formally instructed. All of these 
may lead to inaccuracy of classification.

Besides, with regard to the type of the stimulus materi-
als, pictures, sounds, video clips, interactive items are used 
to evoke emotions or cognitive states. Standardized and 
non-standardized databases of movie clips have been con-
structed such as [28] for general emotion induction like joy, 
amusement, or fear, although the number is still a few. To 
evoke learning emotions, tests, pedagogical contents, pic-
tures, sounds, and courses video clips have been leveraged. 
In [26], pedagogical content was used to trigger confusion, 
frustration, anxiety, curiosity in one-to-one expert tutoring 
sessions. Wang et al. [45] used selected online courses video 
clips to trigger confused and non-confused states in learn-
ing. In [25], four computer learning environments that were 
well designed with AutoTutor have been developed to elicit 
confusion in learning.

2.3  EEG‑based detection methods

EEG, as one representation of the brain’s electrical activi-
ties, has been widely used to measure activities or states 
like working memory [15, 23], engagement [43], happiness 
[28], or stress [39]. In e-learning, engagement and motiva-
tion are the states that have been investigated mostly. In a 
survey of portable EEG technology in educational research 
[48], twenty-two papers were coded and discussed, and all 
except one revolved around the attention or motivation rec-
ognition for all five research topics, including interactive 
behavior, reading context, e-learning, presentation patterns 
of learning materials, and edutainment. Pekrun and Linnen-
brink-Garcia [32] discussed academic emotions and student 
engagement, and summarized five types of engagement, that 
is, cognitive, motivational, behavioral, cognitive-behavioral, 
and social-behavioral engagement. Cognitive engagement 
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(like attention) refers to the process of selectively concen-
trating on a discrete aspect of information [2]. Engagement 
has been considered as the indicator of motivation (also 
named as motivational engagement). For example, in [13], 
Ghergulescu et al. proposed a real-time EEG-sensor-based 
learner motivation analysis methodology in game-based 
learning. Engagement is not the only aspect that should be 
focused. However, limitation exists due to a lack of studies 
in investigating other aspects beyond engagement. There is 
considerable room for studies and advances with respect to 
assessment of cognitive and affective aspects like confusion, 
the importance of which is stated in Sect. 2.2.

In the last two decades, machine learning techniques for 
the analysis of EEG signals have been regarded as novel 
tools, which allow extracting features from EEG data and 
then performing classification or prediction [21]. As EEG 
being complicated in nature, many machine learning meth-
ods have been involved in this domain. In many EEG-based 
systems, machine learning techniques work as a central 
component and meet the requirements of neuroscience of 
brain signals decoding. The classic methods contain three 
steps: the preprocessing data, time–frequency analysis, and 
classification [21]. The goal of classification is to find the 
relationship between EEG and brain activities. Among clas-
sic machine learning techniques, support vector machine 
(SVM), which has good performance and suitability for 
small sample size, has been used as one of the most com-
mon tools for the classification of EEG signal [27, 30, 46]. 
In [46], Wang et al. designed and built a system of positive 
and negative emotions recognition using EEG signals. Their 
system achieved an accuracy up to 78.41% using SVM. The 
power spectrum feature, wavelet feature, and nonlinear 
dynamical feature were extracted and principal component 
analysis (PCA), linear discriminant analysis (LDA), and 
correlation-based feature selector (CFS) methods were used 
to reduce dimensions. SVM has been proved to be effective 
in EEG signals classification; however, the step of a priori 
feature extraction and selection is inevitable. In brain signal 
decoding, not all relevant features can be foreseen clearly, 
especially for confusion, which is an emerging research topic 
in the direction of brain decoding and has not been fully 
studied.

Deep learning methods or deep neural networks have 
greatly improved the performance of supervised learn-
ing in many domains like speech recognition and visual 
object recognition, which “allows computational models 
that are composed of multiple processing layers to learn 
representations of data with multiple levels of abstrac-
tion” [24]. Due to the great success in recognition tasks 
within a wide range of applications, these methods have 
gained great interest by researchers to address problems 
in EEG signals decoding and classification. Deep learning 
with convolutional neural networks (CNNs) proposed by 

LeCun et al. [24] can learn inherent patterns from data and 
objects automatically through end-to-end learning rather 
than employing prior extracted features. Differing from 
traditional machine learning methods, CNN provides a 
possibility to directly jump to the third step of EEG clas-
sification as stated above. End-to-end deep learning [24] 
method learns from the raw data and replaces multiple 
steps with just a single neural network, reducing the pro-
cess of feature extraction.

The EEG signals are complex and weak, intertwined 
with noises; thus, it is hard to directly uncover the underly-
ing essence from raw EEG data using traditional methods. 
However, the end-to-end method can map raw data directly 
to objectives. To take advantages of this, increased work 
adopt end-to-end CNN to analyze the EEG raw data, with 
decoding problems covering imagined movement classifi-
cation [35, 41, 44], mental load recognition [4, 19], cogni-
tive performance [16], memory prediction [42], seizures 
detection [3], etc. In their work [4] of modeling cognitive 
events from EEG data, Bashivan et al. transformed EEG 
data into topology-preserving multispectral images and 
trained a deep recurrent-convolutional network to learn 
representations from images. Their empirical evaluation 
on the cognitive load classification task showed signifi-
cant improvements in classification accuracy. Hajinoroozi 
et al. [16] proposed a channel-wise convolutional neu-
ral network (CCNN) to predict driver’s cognitive states 
related to driving performance using EEG signals. Results 
showed that CCNN and CCNN variation achieved robust 
and improved performance.

3  Proposed methodology for confusion 
assessment in game‑based learning

In this section, we present the core of our proposed EEG-
based confusion detection methodology at first and then 
discuss the major components in details.

3.1  The core of the methodology

This paper proposes a novel noninvasive portable EEG-
based learner confusion analysis methodology that is to be 
used in game-based learning systems or educational game 
context. The methodology is built upon four major compo-
nents, including the experiment of confusion evoking, data 
collecting from EEG acquisition device, data preprocessing, 
and classifier building. Among these four major steps, the 
experiments of confusion induction and classification model 
building are essential. Figure 1 shows the core of our pro-
posed EEG-based confusion detection methodology.
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3.2  Major components

Figure 2 shows the major components of building the confu-
sion states classifier for an educational game based on end-
to-end deep learning algorithm in machine learning.

Components 1: Experiment design and set-up The experi-
ment will be described in Sect. 4. The experiment serves for 
data acquisition, preprocessing, and classifier building and 
delivers the data to the latter components.

Components 2: Data acquisition We record the learn-
er’s confusion while s/he doing the logic reasoning in the 
Raven’s test and Sokoban Game, leveraging the OpenBCI 
EEG data acquisition device. The noninvasive medical EEG 

data acquisition devices are expensive and not easy to use, 
requiring using conductive paste to stick EEG electrodes 
directly to the skin. It usually takes from 20 minutes to one 
hour to wear the cap, depending on the numbers of channels 
that would be used. Besides, it requires the cable to transmit 
the data. These limitations keep these devices away from 
being used in the game play. Other types of devices like 
Emotiv, NeuroSky and OpenBCI are portable and use the 
Bluetooth or Wi-Fi to transmit the data to the computer. 
Among them, OpenBCI, is an open-source brain–computer 
interface (BCI) device, the software and hardware of which 
can be modified and developed as needed, providing more 
opportunities for researchers. In this work, we use Open-
BCI Cyton board with the 3D printed headset to acquire 
raw EEG data (as shown in Fig. 3), and the data is delivered 
to the computer via Bluetooth. The neuro-headset featured 
8 channels (Fp1, Fp2, C3, C4, T5, T6, O1, and O2) plus 
2 references (A1 and A2) based on the 10-20 format. The 
trigger function and hardware were implemented to segment 
the data.

Fig. 1  The core of the EEG-based confusion detection methodology: 
training on the data from one standardized cognitive test paradigm 
(Raven’s test) and testing on the data from real tasks in the game play 
(Sokoban Game)

Experiment set-up • standardized Raven's test: 11 females, 12 males
• Sokoban game test: 1 females, 4 males

Participants
• 10 scenery pictures
• 48 Raven's tasks
• 5 levels in Sokoban game test

Procedure of experiment

Data acquisition
• Device: OpenBCI
• Channels: 8 (Fp1, Fp2, C3, C4, T5, T6, O1 

and O2)
• References: A1 and A2

Data Recording

• Dataset 1 (from standardized 
Raven's test)

• Dataset 2 (from Sokoban game 
test) 

Raw EEG datasets

• Assigning labels (non-
confused state, confused 
state)

Ground Truth

Data preprocessing • Creating epochs based on events
• Segmentation

Creating epochs and segmenting

Building classifier • Training: dataset 1
• Testing: dataset 1

Cross-subject
• Training: dataset 1
• Testing: dataset 2

Cross-task and cross-subject

Fig. 2  Major components of building the confusion states classifier for educational game based on end-to-end learning algorithm of deep learn-
ing in machine learning

Fig. 3  Data acquisition device
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Components 3: Data preprocessing Before processing the 
data, it is necessary to segment the data into desirable pieces 
and assign the data to train and to test. The segmentation, 
assignment, and implementation will be discussed in Sect. 5.

Components 4: Building Classifier In spite of its impor-
tance, detecting confusion states of game-based learning is 
hard to be implemented in practice. Trials of game-based 
learning usually take some time to complete and introduce 
diverse electromyography (EMG) artifacts into EEG data 
due to moving arms for interaction. This makes the preproc-
essing step complicated and requires extra experiments to 
remove such diverse EMG noises, that is, valid data are dif-
ficult to obtain. In the experiment to evoke confusion states 
based on standardized Raven’s test, subjects were asked to 
select the right answer by using only one finger. This can 
reduce artifacts in maximum. Besides, it is easy to record 
and provide the benchmark to evaluate knowledge-free con-
fusion states of logic reasoning. The patterns and features 
hidden in the EEG signals of confusion states in different 
kinds of activities are similar, while the differences are the 
artifacts produced by various activities. The basic idea of 
transfer learning [31] of deep learning is that early layers 
usually represent generic features, while later layers describe 
specific features. Due to the relative small size of the EEG 
dataset, it is unsuitable to use transfer learning directly. 
Inspired by transfer learning, if the learning model can ben-
efit from the basic experiment in good condition (standard-
ized Raven’s test) at first, it will make a good performance in 
experiment in a complex condition (Sokoban Game).

Based on this idea, we propose a methodology leverag-
ing cross-task and cross-subject methods to build classifiers 
based on end-to-end learning with convolutional neural net-
works (ConvNets). Cross-task refers to training on the data 
collecting from one standardized cognitive test paradigm 
(Raven’s test) and testing on the data from real tasks in the 
game play (Sokoban Game). Cross-subject refers to divid-
ing subjects into three groups (that is, group one, group two, 
and group three) and letting group one take part in the first 
task (Raven’s test), group two take part in the second task 
(Sokoban Game), and group three take part in both tasks 

(Raven’s test and Sokoban Game). Since the task based 
on the Sokoban Game is complex, the valid data cannot 
be easily obtained. Compared with group one, groups two 
and three are relatively small. We attempt to find confusion 
states of group two based on the model trained using the data 
of group one and group three. The main idea contains two 
steps. The first step is to build the datasets on the experiment 
of standardized Raven’s test and the game, respectively. The 
second is to build the learning model based on the training 
data containing all of the data from the Raven’s test and 
part of the data from Sokoban Game. In short, our approach 
trains a model on the mixed data from standardized Raven’s 
test and Sokoban Game test and provides a prediction of 
confusion states on the Game test. It uses a few of labeled 
data from the experiment of the Sokoban Game to achieve a 
good performance based on the cross-task and cross-subject 
model in the educational game.

The learning model is built based on ConvNets. The basic 
structure is as shown in Fig. 4. One hidden layer is con-
structed by three kinds of parts: convolution, activation, and 
pooling. EEG data collecting by the OpenBCI are consid-
ered as the input, and the confused or non-confused states 
(two confusion states) are considered as the output.

4  Experiment design and setup

In this section, we present the experiment design and setup, 
including participants’ basic information, two experi-
ments, stimuli of Raven’s test and Sokoban Game, and the 
procedure.

4.1  Stimulus design

Overall, the whole experiment is composed of two parts: the 
experiment using Raven’s test as stimuli, and the experiment 
in which participants play the Sokoban Game, as shown in 
Fig. 5.

Experiment 1: Raven’s Test To build the classification 
model, we adopt Raven’s Matrices family of tests to evoke 

Fig. 4  The main structure of ConvNets
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confusion and then obtained the EEG data. Raven’s Pro-
gressive Matrices (RPM) is a family of standardized intel-
ligence tests, in which a matrix of figures is presented with 
one entry missing, and the correct missing entry is expected 
to be selected from a set of answer choices. It is a nonverbal 
group test typically used in educational settings to measure 
the taker’s abstract reasoning ability [34] and is adminis-
tered to the groups ranging from 5-year-olds to the elderly. 
The original test of Raven’s matrices consists of increasingly 
difficult pattern matching tasks, which has little depend-
ency on language abilities. In this experiment, we selected 
48 matrices and changed the presenting order to meet the 
requirement of our experiment. Currently, three versions of 
RPM have been published. They are the original standard 
progressive matrices (SPM), advanced progressive matri-
ces (APM), and the colored progressive matrices (CPM). In 
SPM, there are five groups of tests, named from A to E, each 
containing 12 tests. The levels of difficulty correspond to the 
alphabetical order, that is, group A is the easiest one, while 
group E is the hardest one. The tests in our experiment were 
selected from SPM (E group of SPM, containing 12 tests) 
and APM (all tests of APM, containing 36 tests). Therefore, 
we conducted totally 48 tests to induce confusion. In each 
test item, the subject was asked to identify the missing ele-
ment and complete a pattern. The pattern that was used in 

this experiment was in the form of a 2 × 2 or 3 × 3 matrix, as 
shown in Fig. 6. In the reasoning test, the confusion would 
decrease by time. Thus, we restricted the presentation time 
of tests within 15 seconds, regardless if the problem was 
solved or not. Then, the next stimulus would be presented. 
In this experiment, we assumed that the stimuli, 10 scenery 
pictures, would be not-confusing and the stimuli selected 
from Raven’s tests would be confusing.

Experiment 2: Sokoban Game Sokoban (also called ware-
house keeper) is a type of transport puzzle game, in which 
the player pushes boxes or crates around in a warehouse, 
trying to get them to storage locations. The puzzle solv-
ing process requires searching and building logic reasoning 
strategies. Otherwise, before inference strategies have been 
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obtained, the learner will stay confused, especially at high 
levels of difficulty. In this experiment, we prepared an iPad 
with the Sokoban Game installed for participants to play. 
This version has two modes: leisure mode and puzzle mode 
(as shown in Fig. 7). In leisure mode, there are seven grades 
of difficulty, that is, primary, intermediate, advanced, dif-
ficult, professional, master and expert level. In each grade, 
200–1000 levels of play are available. The numbers of levels 
vary though the difficulty of each level in the same grade 
does not have too much difference. In the puzzle mode, 
instead of the grade, there are 900 levels and the game level 
increases. We used leisure mode since it is easier to identify 
the game levels with the appropriate difficulty. We did a pilot 
test with three persons to play Sokoban for hours to select 
game levels. For the novice player, the game levels in the 
primary and intermediate modes are not that hard to break, 
which takes 20 s to one minute on average. In the advanced 
level, it is hard to break in less than 2 min. In the difficult 
mode, it usually requires 20–30 min to break the puzzle. 
Therefore, we selected 5 levels in the advanced grade to 
evoke confusion state in the Sokoban Game.

4.2  Participants

For the first experiment, we used the data of twenty-three 
subjects, including 11 females and 12 males. Their ages 
were distributed between 20 and 47 years (Mean  =  24.48, 
SD  =  6.36). All subjects had normal or corrected vision 
and were right-handed. Most of the subjects (60.87%) had 
college level education. The remaining 34.78% had a higher 
education level of a master degree or above. One subject had 

only completed high school. There was a bias toward higher 
education. All participants were either studying or working 
in the university. All of the subjects have read and signed the 
ultimate consent form in single access type version, that is, 
all data can be shared publicly. Participants were compen-
sated for their time.

In the second experiment, we had five volunteer sub-
jects, including four males and one female. All were nov-
ice players of the Sokoban Game. Two of the subjects had 
participated in the first experiment, while three of them had 
not. All participants were either studying or working in the 
university.

4.3  Procedure

In the first experiment using Raven’s test as stimuli, the tester 
briefly introduced and explained this study. Then, the tester 
asked for the permission of using the recorded EEG data for 
the research purpose, and each participant read and signed 
the consent form. After each participant watched the stimuli, 
s/he was asked to fill out the questionnaire and explain their 
choices. As shown in Fig. 5a, each subject was asked to 
watch the stimuli coded by E-Prime 2.0 [11], including 10 
scenery pictures and 48 reasoning pictures. Their responses 
to reasoning tests were recorded by E-Prime. Then, each 
subject had to fill out the questionnaire after finishing watch-
ing. In this process, EEG data were recorded using a laptop 
computer and the stimuli were presented via another com-
puter, while the time needed was synchronized through the 
trigger system developed. After the reasoning task, a ques-
tionnaire was asked to fill out, including participants’ basic 
information and their self-assessment of confusion levels 
for each test.

The second experiment using the Sokoban Game as stim-
uli was similar to the first one in the procedure. The time 
needed to play the Sokoban Game is on average longer than 
that of solving a standard reasoning puzzle game.

5  Results

EEG data obtained from the OpenBCI device were sampled 
at 250Hz. As already mentioned, the data labeled as “con-
fused” came from two sources: Raven’s test and the Sokoban 
Game. By comparison, the non-confused state is defined 
as the state when subjects watch scenery pictures for ten 
seconds. The beginning and the end seconds of each piece 
of data were discarded, because the manipulation action 
occurred at the beginning of each trial, which brings EMG 
artifacts. To process, the rest of the data of every subject 
were merged and then split into small pieces of four seconds.

Fig. 7  Sokoban game interface
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EEG data have significant differences between subjects. 
With regard to OpenBCI, the data value of a single chan-
nel is around ±105 . In order to avoid the impact of indi-
vidual differences in EEG, the normalization process was 
adopted at first. The raw EEG data were normalized using 

the Z-score standardization method. This method is based 
on the normalization and standard deviation of the original 
data and expressed as:

Where � is the mean and � is the standard deviation.
The comparison of the data before and after normali-

zation by Z-score standardization is as shown in Fig. 8. It 
can be seen that the result of Z-score standardization is that 
all data are clustered around 0 with a variance of 1, which 
reduces individual differences in EEG.

We employed two dataset allocations to evaluate the 
two different parts of our approach, respectively. The first 
allocation was designed to evaluate whether the end-to-end 
method can work well on the raw EEG data. The data col-
lected from the experiment of Raven’s test were put into this 
allocation. The data were partitioned into two disjoint sets: 
the training and the test sets. The model was induced from 
the training set, and its performance was evaluated on the 
test set. Of the raw data, 70% were for training, while the 
rest for testing. We built a ConvNet with five layers, contain-
ing four convolutional layers and one full-connected layer, 
to analyze the EEG data from this allocation. The learn-
ing rate was 0.00001. Since the ordinary gradient descent 
algorithm updates w and b at a slower rate, we used the 
adaptive moment estimation (Adam) algorithm to optimize. 
The Adam optimization algorithm speeds up the process of 
gradient descent and eliminates excessive swings during the 
gradient descent. According to this evaluation, the accuracy 
of our approach based on the end-to-end method distinguish-
ing confused and non-confused states reached 96.37%.

The second allocation was designed to evaluate the per-
formance of the cross-task and cross-subject approach, on 
the basis of the end-to-end classification method. The allo-
cation design is as shown in Fig. 9. The training set con-
sists of the raw EEG data collected from the experiment of 
Raven’s test with 23 subjects and the raw EEG data from the 
Sokoban Game with two subjects who had already taken part 

(1)z = (x − �)∕�

Fig. 8  The comparison of raw data and normalized data

Fig. 9  The design allocation 
of cross-task and cross-subject 
approach

 

Training dataset Testing dataset

EEG data from Raven's test EEG data from Sokoban game test
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in the Raven’s test experiment. The test set consists of the 
EEG data from the Sokoban Game with three subjects who 
had not taken part in the Raven’s test. The ConvNet shared 
the same structure as shown in Fig. 7. Finally, in this evalua-
tion, the accuracy level reached 91.04% when distinguishing 
confused and non-confused states of students in the Sokoban 
Game playing.

6  Discussion, limitations, and future work

6.1  Discussion

In this study, we have attempted to unveil the relationship 
between EEG data and confusion states and leverage this 
relationship to assess confusion in an educational game. 
Our approach successfully classifies the confused state from 
non-confused state of students in the logic reasoning in a 
game, which obtains an average accuracy of more than 90% 
in the classification performance of within-task and within-
subject (using data from the first allocation), and cross-task 
and cross-subject (using data from the second allocation). 
First, these results indicated that EEG-based technology can 
be used to recognize and assess students’ confusion in the 
context of logic reasoning in game-based learning. Second, 
the results proved that the end-to-end method can extract 
implicit features from the raw EEG data directly and does 
not require any preprocessing steps differing from traditional 
methods. Third, with respect to the same emotion, that is, 
confusion, for different tasks, the cross-task and cross-sub-
ject approach performs well on the dataset of small samples 
in complex tasks, namely by just using a few labeled data 
from complex tasks (Sokoban Game) and more labeled data 
from the standardized task (Raven’s test). Our experiment 
proved the feasibility of leveraging a cross-task and cross-
subject method to build the classifier for confusion detection 
in real tasks of long duration, in an educational game.

6.2  Limitations and future work

Although our work is forward-looking and exploratory, and 
the findings are promising, there are still limitations. First, 
the EEG data acquisition device itself becomes the first 
limitation, the use of which limits the numbers of partici-
pants. Although off-the-shelf EEG acquisition devices are 
available, their design and usability are not as good com-
pared to smartphones. It is not convenient enough to wear 
such devices over a long period of time in the real game 
scenarios. Thus, the number of subjects who attend experi-
ments is not big in our study and in other related studies. In 
addition, the human brain accomplishes different kinds of 
work with an activation of different parts. In this work, we 
used eight channels around the scalp to detect the change of 

EEG. Exploring the activated parts of the brain in function 
for confusion paves the way toward decreasing the numbers 
of channels and further making it convenient to wear and 
feasible to support the application in an educational game.

Second, a two-class classification model is preliminary. 
In this study, our work focuses on distinguishing only two 
states, that is, confused or not, and build the classifier. Con-
fusion is complex and dynamic, the states of which are 
considered as a gradual thinking process. There should be 
many nuanced states though not two states merely. Once the 
learner fails to resolve the confusion and stays in a confused 
state at a high or medium level over a long time, s/he will fall 
into frustration and then boredom. Therefore, it is worth of 
studying deeply and unremittingly. Multi-class classification 
models should be investigated, including defining the levels 
of confusion like high level, medium level and high level. In 
a near future, we aim to find these nuanced states of confu-
sion based on EEG data.

Third, logic reasoning is one of the instances that could 
induce confusion, that is, the individual cannot infer the 
rules when doing rule-based reasoning or solving a puzzle. 
Other instances exist, such as the new coming information 
being inconsistent with existing cognitive structure of the 
learner. It is different to resolve the confusion for different 
instances. Therefore, supplementary confusion detection 
methods to complement the EEG-based method should be 
considered to distinguish the confusion types. In this way, 
the confusion states in the educational games context can 
be profoundly detected, which could be used for building a 
personalized learning path.

7  Conclusion

Confusion is one of the most important cognitive emotions 
in learning. It is strongly related to learning efficiency. Our 
study focuses on confusion detection in the instance of logic 
inference in educational game. Due to the complexity of 
EEG data and confusion states, we designed two experi-
ments to arouse confusion in logic reasoning. It extends the 
approach from the laboratory (Raven’s test) to the appli-
cation (Sokoban Game). Since the size of the dataset of 
the educational game is too small to train, the end-to-end 
approach based on cross-task and cross-subject is proposed. 
It not only provides a way to classify confusion states using 
raw data directly, but also provides opportunities to build the 
learning model based on small datasets. Finally, the result 
achieves 91.04% accuracy to classify confusion in the game 
play. To conclude, the findings of this research have con-
tributed to our understanding of the relationship between 
EEG data and confusion states and the potential EEG-based 
methodology for assessing students’ confusion in the context 
of educational games.
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