
Int. J. Sensor Networks, Vol. 22, No. 3, 2016 145

Copyright © 2016 Inderscience Enterprises Ltd.

A smart brain: an intelligent context inference
engine for context-aware middleware

Tao Xu*
School of Software and Microelectronics,
Northwestern Polytechnical University,
127 West Youyi Road,
Xi’an Shaanxi, 710072, China
Email: daridxu@gmail.com

Yun Zhou*
School of Education,
Shaanxi Normal University,
199, South Chang’an Road,
Xi’an Shaanxi, 710062, China
Email: chouyun920@gmail.com
*Corresponding authors

Bertrand David and René Chalon
Université de Lyon, CNRS,
Ecole Centrale de Lyon, LIRIS, UMR5205,
Ecully, 69134, France
Email: bertrand.david@ec-lyon.fr
Email: rene.chalon@ec-lyon.fr

Abstract: Recently, ‘activity’ context draws increased attention from researchers in context
awareness. Existing context-aware middleware usually employ the rule-based method to, which
is easy to build and also intuitive to work with. However, this method is fragile, not flexible
enough, and is inadequate to support diverse types of tasks. In this paper, we surveyed the related
literature in premier conferences over the past decade, reviewed the main activity context
recognition methods, and summarised their three main facets: basic activity inference, dynamic
activity analysis, and future activity recommendation. Based on our previous work, we then
proposed an intelligent inference engine for our context-aware middleware. Besides satisfying
requirements for checking context consistency, our inference engine integrates the three methods
for activity context recognition to provide a solution for all facets of activity context recognition
based on our context-aware middleware.

Keywords: context awareness; context reasoning; activity recognition; middleware; sensor
networks.

Reference to this paper should be made as follows: Xu, T., Zhou, Y., David, B. and Chalon, R.
(2016) ‘A smart brain: an intelligent context inference engine for context-aware middleware’,
Int. J. Sensor Networks, Vol. 22, No. 3, pp.145–157.

Biographical notes: Tao Xu is currently an Assistant Professor in Northwestern Polytechnical
University. He got his PhD in Ecole Centrale de Lyon in 2013. He received his BE and ME in
Automation and Software Engineering at Xi’an Jiaotong University in 2006 and 2009,
respectively. His research activities focus on ubiquitous computing, context awareness, machine
learning and middleware.

Yun Zhou received her PhD from Ecole Centrale de Lyon in 2012. She received her BE from
Beijing Normal University and ME in Educational Technology from Beijing Jiaotong University
in 2006 and 2009, respectively. Her research interests focus on user interface design, wearable
computing and evaluation.

Bertrand David is a Professor in Computer Science at Mathematics and Computer Science
Department of Ecole Centrale de Lyon and a Researcher in LIRIS Lab (Laboratoire
d’InfoRmatique en Image et Systèmes d’information), SILEX team. His research interests
include human-computer interaction, ambient intelligence and mobile learning.

146 T. Xu et al.

René Chalon is an Associate Professor in Computer Science at Mathematics and Computer
Science Department of Ecole Centrale de Lyon. He has been a Researcher in LIRIS lab
(Laboratoire d’InfoRmatique en Image et Systèmes d’information), SILEX team, since July
2011. His research interests include human-computer interaction and ambient intelligence.

This paper is a revised and expanded version of a paper entitled ‘Supporting activity context
recognition in context-aware middleware’ presented at Workshops at the Twenty-Seventh AAAI
Conference on Artificial Intelligence (AAAI’13), Bellevue, Washington, USA, 14–18 July, 2013.

1 Introduction
Almost 20 years earlier, Marc Weiser viewed the prospect
of computers in the 21st century and proposed the
pioneering notion of ubiquitous computing. Most of his
visions have already been realised in the past two decades.
Furthermore, one of his primary visions, namely that
systems could adapt their functionality to a user’s activity
and situation in the environment, has led to a new field:
context awareness (Lukowicz et al., 2012). Today, context
awareness, as one of the central themes in the Smart Space
(also described as ambient intelligence), is attracting
increasing attention from researchers. Context-aware
systems are concerned with acquisition of context (e.g.,
using sensors to perceive a situation), abstraction and
understanding of context (e.g., matching a perceived
sensory stimulus to a context) and application behaviours
based on the recognised context (e.g., triggering actions
based on the context) (Schmidt et al., 1998). To achieve this
goal, we need to incorporate the sensors, actuators,
communication objects and computing devices required
for the system. While low-level mechanisms and drivers
are necessary, they must be encapsulated into the more
common and higher-level view designed to collect, treat
and disseminate information appropriately among these
components. Namely, the system should take into account
changes in context and propagate appropriate decisions
(Xu et al., 2011). Context-aware middleware provides a
feasible solution, which meets the aforementioned
requirement.

The holy grail of context awareness is to divine or
understand human intent (Krumm, 2009). An intelligent
system should be able to provide natural interaction between
users and the physical environment. Also, a ‘smart’ context-
aware middleware is required to support development of the
smart space. Context inference plays the role of the brain in
context-aware middleware. Smart space needs a smart brain,
namely an intelligent context inference engine. Context
inference provides two main services: the first is to check
context consistency, whereas the second is to determine or
infer the user’s situation. Once the user’s situation has been
inferred, the application can then take appropriate action
(Krumm, 2009). In recent years, most context-aware
middleware have adopted web ontology language (OWL) to
build the ontology-based model, which provides an efficient
solution to check context consistency. Consequently,
research now focuses on the second service: infer the user’s
situation (commonly referred to as activity). The existing
context-aware middleware usually employs the rule-based

method to infer user’s activity, such as the study conducted
by Wang et al. (2004) concerning leveraging rules based on
first-order logic. To better recognise the user’s activity, a
large number of artificial intelligence methods are explored
and used in context-aware computing. Korpipaa et al.
(2003) use a naïve Bayes classifier to distinguish higher-
level contexts from lower-level contexts. The HMM is
employed to recognise activities in a smart room (van
Kasteren et al., 2008). Pollack et al. (2003) use a decision
tree to make decisions about whether and when it is most
appropriate to issue reminders for prescribed activities.
However, these approaches only provide a possibility to
solve the problem partly based on activity context
recognition. None of them has considered integration of the
approach into the context-aware system, which encourages
collaborative work with other parts of the system.

In this paper, we focus on designing a context inference
engine, which supports activity context recognition and
improves context-aware middleware intelligence. We first
present our context-aware middleware. We then review all
the methods relating to activity context recognition that
have been published in the three premier conferences in the
past decade. To go one step further, we conclude that
activity context recognition consists of three facets:
basic activity inference, dynamic activity analysis and future
activity recommendation. Integrating these three most
salient methods of activity context recognition used in
context-aware applications via strategy patterns, we propose
an intelligent inference engine based on our context-aware
middleware. An invoking mechanism for the inference
engine is designed to provide services and deal with tasks.
This intelligent inference engine not only provides a
solution for meeting current requirements in the field of
activity context recognition, but can also be upgraded to
meet future demands.

The remainder of the paper is organised as follows:
First, we describe our spatial-temporal ontology-based
model. Second, we present the architecture of context-aware
middleware working for the smart space. Third, we
conclude as to the main problems in activity context
recognition and summarise the main approaches already
existing. Following these discussions, we propose an
intelligent inference engine for our context-aware
middleware. Furthermore, two scenarios are investigated to
explain and verify the conceptual work. Finally, we
conclude our work, discuss the pros and cons of our
intelligent inference engine and envisage our future study
prospects.

 A smart brain: an intelligent context inference engine for context-aware middleware 147

2 The spatial-temporal ontology-based model

Before detailing context-aware middleware, we will
describe our spatial-temporal ontology-based model. A
context model, as a fundamental part of the context-aware
system, aims at defining and storing context data in a
machine-readable form Baldauf et al. (2007). Developing a
flexible and useable context model that covers a wide range
of possible contexts is a challenging task (Stojanovic, 2009).
We adopt the ontology-based context model to construct our
context-aware middleware. In the field of context
awareness, ontology is a reference model for components
and behaviours of context (Wang et al., 2004). The
ontology-based model has a large number of good features
for developing the context-aware system, such as
knowledge sharing, knowledge reuse and logic inference. In
particular, logic inference enables the application to use
directly deduced high-level context information.

From the spatial dimension, we employ a hierarchical
structure to describe the user’s situation and circumstance
based on OWL, which is an ontology markup language
adopted by W3C as standard for semantic web. The
structure is shown in Figure 1. The basic model defines
generic conceptions and relationships in the Smart Space,
which come up with a basic context structure. It has five
interrelated basic classes: user, location, time, activity and
device, as well as eight properties (relationships) among
classes, which represent who, where, when, what and why.
Basic context-aware ontology can be completed and
upgraded by more precise information related to a particular
application or application area. It is considered as the
specific model, which can be reused and shared in different
domains.

Figure 1 The spatial-temporal ontology-based model

The context temporal model is an attempt to organise
context according to the temporal dimension. It reflects two
primary classes: time and device shown in Figure 2. The
time class provides three subclasses to describe the temporal
relationship between user and activity. The device class uses
the subclass ‘historical sensed’ to record historical context
data, which can be used to analyse users’ activities and
provide predictions and recommendations.

The basic context-aware model is developed by context-
aware middleware designers, whereas the specific model is
developed by context-aware application developers.

Figure 2 The temporal model class

3 Context-aware middleware

Context-aware applications are becoming increasingly
salient, and are also used prevalently in the areas of
wearable computing, intelligent environments, context-
sensitive interfaces, etc. (Krumm, 2009). A generally
accepted definition of context is given by Dey and Abowd
(Abowd et al., 1999): “Any information that can be used to
characterise the situation of an entity. An entity is a person,
place or object that is considered relevant to the interaction
between a user and an application, including the user and
application themselves”. The context-aware system is
defined as the system that uses the context to provide the
relevant information and services to the user, where the
relevancy depends on the user’s task.

Development of context-aware applications is inherently
complex. These applications adapt to the context
information: physical context, computational context and
user context/tasks (Ballendat et al., 2010). It requires low-
level mechanisms to integrate all sensors, actuators,
communication objects and computing devices into the
system. Then, we propose to create an application-
independent common high-level contextualisation making it
possible to collect, process, interpret and propagate
information with the context model and reasoning
mechanisms.

To implement this more in-depth approach of context-
aware services in the smart space, we have designed a
context-aware middleware based on mobility,
contextualisation and cooperation (MOCOCO), organised in
two layers as shown in Figure 3.

The low layer is a sort of Enterprise Service Bus. It
allows services to be easily plugged in and out of the
network without any impact on other components and
without the need to restart the system or even stop running
applications. In our paper, the context provider is the service
used to obtain context from sensors, the web or other
sources, as well as dispatching commands to actuators. The
low layer provides a unified standard interface to achieve
the core functions of service interaction: service registry,
dynamic service discovery and service consumption. It also
integrates interaction devices and a set of application

148 T. Xu et al.

program interface (API) for different interaction modalities
to support development of interaction approaches.

Figure 3 Context-aware middleware architecture (see online
version for colours)

The versatile context interpreter (VCI) is a high layer of
context-aware middleware, made up of four parts: context
aggregator, inference engine, context knowledge base and
query engine. It leverages the low layer’s basic services
results to deliver and manage context-aware views and
interpretations to deliver high-level information to the
application.

• The context aggregator is responsible for working with
basic contextual data collected by the low layer.

• The context knowledge base provides persistent
storage for context through the use of relational
databases, as well as supplying a set of library
procedures for other components to query and modify
context knowledge.

• The context query engine offers two main services: The
first is to handle queries from the application. It
supports SPARQL, which is an resource description
framework (RDF) query language, able to retrieve and
manipulate data stored in OWL. The second is to
invoke the context inference engine. When the
application requests high-level context, it will invoke
the context inference engine to generate the inferred
context.

• The intelligent inference engine is the central and
intellectual component of our context-aware
middleware. Its details will be presented in the next
section.

4 The intelligent inference engine

Context inference, often described as context reasoning,
refers to inferring further the implicit context from the
explicit context. As we mentioned earlier, its main task
focuses on two main aspects: one task is to check and solve
inconsistencies in context data, whereas the other is to

deduce high-level context information from low-level
context data. The high-level context is commonly
considered as the activity.

With respect to context-aware computing, researchers
focus on who’s, where’s, when’s and what’s (namely, what
activities are occurring) of entities and use this information
to determine the reason why a situation is occurring
(Krumm, 2009). Research work on context awareness is
simplified to achieve these five ‘w’. Among these ‘w’, the
‘why’ is the destination, whereas the other four ‘w’ (who,
where, when and what) represent four fundamental contexts:
user, location, time and activity, respectively. With the
rapid development of technology and widespread use
of smart mobile devices and sensors, the first three
fundamental contexts (user, location and time) are now
relatively easily captured directly from context sources.
However, recognising user’s activities continues to be
difficult.

To ensure better understanding of human intent, we
propose an intelligent inference engine, consisting of a basic
module and an intelligent module as shown in Figure 4.
Besides satisfying the basic requirements, it can provide
appropriate methods for different facets of activity context
recognition, respectively.

Figure 4 The inference engine structure

The basic module’s main task is to check context
consistency. We adopt the ontology-based context model to
construct our context-aware system. It exhibits good
features for developing the context-aware system, such as
knowledge sharing, knowledge reuse and logic inference.
Also, it paves the way for the basic inference module. OWL
has a built-in reasoner based on description logic. This
reasoner can fulfil the essence of logical requirements,
which comprises concept satisfiability, class subsumption,
class consistency and instance checking. Table 1 shows a
partial basic reasoning rule.

Table 1 The partial basic reasoning rule for OWL

Transitive property P(x, y) and P(y, z) implies P(x,z)
Symmetric property P(x, y) iff P(y, x)
Functional property P(x, y) and P(x, z) implies y = z
inverseOf P1 (x, y) iff P2(y, x)
Inverse functional property P(y, x) and P(z, x) implies y = z

 A smart brain: an intelligent context inference engine for context-aware middleware 149

The intelligent module is responsible for deducing high-
level context. In our paper, high-level context mainly refers
to activity. Our aim is to provide a solution supporting
activity context recognition.

Activity context recognition aims at inferring a user’s
behaviour from observations such as sensor data (Hu et al.,
2011), and serves a variety of applications including
medical care (Pollack et al., 2003), logistics service (Lin,
2006), robot soccer (Vail et al., 2007), plan recognition
(Geib et al., 2008), etc. Many researchers focus on finding
the most efficient way to recognise user’s activities. On the
basis of Lim and Dey’s (2010) work, we reviewed literature
from three top-tier conferences on context-aware computing
in recent years, including the ACM Conference on Human
Factors in Computing Systems (CHI) from 2003 to 2012,
the ACM International Conference on Ubiquitous
Computing (Ubicomp) from 2004 to 2012 and the
International Conference on Pervasive Computing
(Pervasive) from 2004 to 2012. Fifty-nine papers relate to
user activity recognition, involving seven algorithms: rules,
decision tree (DT), Naïve Bayes (NB), HMM, support
vector machine (SVM), k-nearest neighbour algorithm
(kNN) and artificial neural networks (ANNs). The detailed
statistical results are shown in Figure 5.

Figure 5 The statistical results of the activity recognition
algorithm (see online version for colours)

We conclude on the research conducted into recognising
user’s activity in three facets shown in Figure 6: basic
activity inference, future activity recommendation and
dynamic activity analysis.

Figure 6 The three main facets of activity context recognition

• Basic activity inference focuses on recognising the
basic types of activity, such as working, sleeping and
shopping. User’s activity can be deduced directly based
on low-level context obtained from diverse context
sources containing physical context sensors and virtual
context source (web service). The method based on
rules is used to infer the basic activity.

• Future activity recommendation usually refers to
recommending or predicting user’s future activity or
choices. To achieve this, besides taking into
consideration the user’s current situation (context), the
context of the user’s previous similar behaviours
(training data) must be analysed. The decision tree can
ideally cope with this problem, and can be considered
as a type of context-aware recommendation.

• Dynamic activity analysis is responsible for analysing
fine-grained activity compared with basic activity
inference. There are two main solutions: the first
employs the state-space model, which partitions the
activity into state sequences and infers the type of
activity (state sequence) based on the probability
of an observed sequence such as Bayesian networks
and HMM. The second solution relies on pattern
recognition techniques, which extract patterns from
activities and infer the type of activity based on
different activity patterns, such as SVM and ANN. As it
is similar to future activity recommendations, it also
requires learning of process parameters from the
previous activity information.

We can observe that the three most popular methods are
rules, DT and HMM. Each method has its own advantages
and characteristics. We have analysed them (detailed
information will be stated in the following sections) and
found that all three methods can be leveraged to deal with
these three facets, respectively. Moreover, these three
methods mostly represent the mainstream solution on their
actual facet. We integrate the three methods, namely rules,
DT and HMM, into our context-aware middleware as our
research focus.

4.1 Rules

‘Rules’ is an early attempt to infer user’s activity in context-
aware computing. ‘Rules’ refers to the method using a set of
if–then rules to infer user’s activity based on first-order
logic: if the devices sense a particular situation, then
it can deduce the user’s activity. ‘Rules’ is based on
general features of activity. It should be possible to
obtain these chosen features of activity, namely low-level
context, by physical sensors or other context sources.
We employ a simple example as shown in Figure 7 to
interpret it.

‘Rules’ has a wide range of adaptabilities, which is
usually designed to provide inference for almost all users.
Furthermore, it is relatively intuitive and easy to work with.
However, rules are rigid, meaning that they are also brittle

150 T. Xu et al.

(Krumm, 2009): even trifling exceptions will generate some
errors. Nevertheless, since this method is easy to implement
in context-aware applications, it continues to be an effective
and widely used method to infer user’s activity. We
leverage it to work on basic activity inference.

Besides rules, the common alternative approaches
involve artificial intelligence algorithms. DT and HMM
both belong to this category, and each has its own characters
to focus on different facets.

Figure 7 This is an example of rules

4.2 Decision Tree (DT)

The decision tree is a classic algorithm in the field of
artificial intelligence shown in Figure 8. It is a predictive
model that maps observations on an item to conclude on the
item’s target value. Decision trees are learned by recursively
partitioning training data into subgroups until those
subgroups contain only instances of a single class.
Processing for partitioning data runs on the values of item
attributes. The choice of the item attribute on which to
operate the partition is generally made according to the
entropy criterion and the information gain. The entropy of S
can be described in function (1), which is a measurement of
the expected encoding length in bits.

2Entropy(S) (s) log (s)p p= −∑ (1)

Figure 8 The classic example of the decision tree

The information gain is the expected reduction in entropy
caused by partitioning the examples according to this
attribute. The information gain, Gain(S, A) of an attribute A,
relative to a collection of examples S, is defined as:

Value(A)

Gain(,) Entropy() Entropy()v
v

v

S
S A S S

S∈

= − ∑ (2)

where Values(A) is the set of all possible values for attribute
A and Sv is the subset of S for which attribute A has the
value v. The information gain is used to select the best
attribute at each step for growing the tree. More clearly, the
classic example is shown here.

The decision tree is simple to understand and interpret.
Users are able to understand decision tree models following
a brief explanation. Decision trees are popular for their
simplicity of use, interpretability and good runtime
performance. They are commonly adopted in content-based
recommender systems (Pazzani et al., 1996; Pollack et al.,
2003), which can be employed to give a recommendation
for user’s activity.

4.3 Hidden Markov model (HMM)

The HMM is one of the most accepted algorithms in
temporal recognition tasks, including speech, gesture,
activity, etc. The HMM is a statistical Markov model, which
can recover a data sequence that is not immediately
observable. In human activity recognition, complex
activities have a temporal structure. The time series data
obtained by sensors is divided into time slices of constant
length, where each slice is labelled with a state of activity.
A generic HMM for activity is illustrated in Figure 9. The
shaded nodes (A) represent observable variables (data from
sensors), whereas the white nodes (Q) represent hidden
variables (state of activity). t in these two functions
represents the time of state, P is the state of transition
probabilities and Q is the observation probability.

Figure 9 The simple example of the HMM for activity
recognition

The HMM can learn the parameters ‘P, Q’ of the
probabilistic model from the training data. Inference, which
best labelled sequence explaining the new coming data from
the sensors, is depended on calculating a maximum of the
conditional probability 1 2 3 1 2 3(, , ... | , , ...) :P a a a o o o

1 2 3

1 2 3 1 2 3 1 2 3
all , , ...

, , ... (, , ... | , , ...)
a a a

a a a ArgMax P a a a o o o= (3)

where ai presents a state of activity and oi refers to
observable variables from the sensors. HMM is rapidly
gaining ground in dynamic activity analysis.

4.4 Organisation of three algorithms

Our context-aware middleware enables application
designers to concentrate on the development of application
logic. The intelligent inference engine takes into account
two aspects of design: expandability and scalability. Rules,

 A smart brain: an intelligent context inference engine for context-aware middleware 151

DT and HMM play important roles in basic activity
inference, future activity recommendation and dynamic
activity analysis, respectively. The three algorithms are
related to various implementation methods. We adopt the
strategy pattern to organise the three algorithms. This
encapsulates the algorithm into separate classes, which
enable the context-aware application developer to vary the
algorithm independently from the context and to plug
in a new one at runtime. The strategy pattern offers
an alternative to conditional statements for selecting
desired behaviour, which makes the three algorithms
interchangeable. It gives this module flexibility, so that
context-aware application developers can alter and extend
the module.

We define a universal interface: ‘InferBehaviour’.
Context-aware application developers can add other
algorithms without affecting the original ones, as long
as the algorithms employ this interface. Moreover, if
context-aware application developers want to adopt
different inference methods to deal with different situations,
they just invoke the function with the same name based on
this interface, and do not need to use the actual algorithm.
The partial UML model is shown in Figure 10.

Figure 10 The partial UML of the inference engine

4.5 The invoking mechanism

The invoking mechanism refers to how and when the
context-aware middleware runs the inference engine.
According to different reasoner tasks in the intelligent
inference engine, we present different methods for the
reasoners, respectively.

In the basic module, the OWL reasoner’s main task is to
check context consistency. It is invoked when the new
context model is added, such as adding a new specific
model. In the intelligent module, owing to the different
methods of activity context recognition, the invoking
mechanism is more complex than the basic module.

Concerning the rules reasoner, we design a query
invoking mechanism that enables the rules reasoner to work
when receiving the query from an external service, such as
context-aware applications. There is a very interesting
phenomenon, i.e., the property exists in almost all the query
statements: for example: ‘?s ex:hasLocated ex:Room3’.
Furthermore, the property is like a linking point of the
objects, the amount of which is much less than the object
itself. So, these properties are defined as the keywords,
which are used to trigger the specific users’ rules set in the

rules reasoner. When a query statement arrives, the context-
aware middleware reacts: it parses the query statement, then
tries to match keywords. If it succeeds, the basic inference
engine is invoked, while, on the contrary, if it fails, it
searches for the context database directly. The entire flow is
shown in Figure 11.

With respect to the DT reasoner, we present a schedule
invoking mechanism, which invokes the DT reasoner based
on the user’s schedule. The DT reasoner is in charge of
future activity recognition, which works with the user’s
schedule. When the system finds that the user is not in the
place where he/she is scheduled, the system reminds
him/her and gives a suggested choice based on the user’s
current location. Figure 12 explains the flow of schedule of
the trigger mechanism.

Figure 11 The flow chart of the query invoking mechanism

Figure 12 The flow chart of the schedule invoking mechanism
(see online version for colours)

We enable the HMM reasoner to always work when the
middleware system is running, owing to the requirements of
the reasoner’s algorithm and task. This provides the activity
sequence inference based on the sequence sensor data, and
thus requires time series data from sensors. The inference

152 T. Xu et al.

results and the historical results can be stored in the context
knowledge base. The context-aware application can employ
the results directly based on different requirements.

5 Scenario and implementation

In this section, we propose two scenarios (applications)
to explain and verify how our intelligent inference
engine deals with three facets of problems concerning
user activity recognition. The bus stop scenario involves
the rules reasoner and the DT reasoner, while the
domestic activity application is used to verify the HMM
reasoner.

5.1 Bus stop scenario

The bus stop application is a typical application of the Smart
City (David et al., 2011). In our previous work, we
organised all activities around or in relation to the bus stop
shown in Figure 13. The bus stop can provide hot spot
services and location-based services. To explain more
clearly how context-aware middleware works, we present
the bus stop scenario as follows: after an international
conference, Tao is taking the bus back to his hotel. He is
tired, hungry and only wants to have his favourite meal:
roast chicken. However, he has never been to this city
before and knows nothing about it. While he is fantasizing
about this food, the bus arrives at the bus stop. ‘Oh-la-la!’
Tao gets off the bus and shouts out with excitement. An
avatar, recognising him (by the collection of his
identification data) in the large public screen, speaks his
native language to him with the subtitles popping up:
“Welcome! The roast chicken restaurant is about 300m
away from this bus stop. If you want to book a seat, please
wave your hand to me…

Figure 13 The bus stop scenario (see online version for colours)

The context-aware middleware collects contextual
information from various interaction devices (public screen,
etc.), techniques (gesture recognition, markers or face
recognition, etc.) and sensors (camera, RFID, QR codes,
etc.) for the relevant application. The work process of
context-aware middleware for this scenario is as follows:

When Tao steps onto a bus and scans his traffic card (RFID
card), his public profile is transferred to context-aware
middleware at the bus stop via internet. It deduces Tao’s
current activity: taking the bus. Then, it checks Tao’s
schedule to find Tao’s next activity, having dinner, and
searches all the restaurants near the bus stop to recommend
him a potential favourite restaurant. The camera fixed at the
bus stop distinguishes Tao from the other passengers (face
recognition techniques allowed by Tao’s profile), and then
confirms the reservation by Tao’s hand gestures (gesture
recognition techniques).

The intelligent inference engine plays an important role
in the bus stop scenario. To obtain the user’s activity
context, it uses two reasoners: the rules reasoner and the DT
reasoner. The rules reasoner is responsible for inferring
Tao’s activity based on a rule set. Therefore, application
designers should define first-order logic rules for specific
activities, respectively, based on related low-level contexts
that can be easily gotten from environments. To simplify
understanding, Figure 14 lists some rules that we define for
the bus stop scenario.

Figure 14 The sample rules

 A smart brain: an intelligent context inference engine for context-aware middleware 153

The decision tree focuses on recommending the
potential favourite restaurant to Tao. To achieve this
recommendation, it requires these three steps: collecting
training data, building the decision tree and providing the
predictive recommendation.

Collecting training data is one of the most important
tasks for the DT reasoner. This requires collecting
accurate and available information on the previous activities
of each user. This has been considered a tough task in the
past, since it is hard to let the user wear diverse sensors to
travel around for a long time, only to collect raw training
data. The prevalence of social networks provides a possible
solution to this problem. Increasingly, people are posting
their daily activities on their own social networks as part of
life. This applies in particular to the microblog, whose
content is typically smaller in both actual and aggregate file
size. It is convenient for users to post their activity via
mobile devices anywhere and anytime.

We chose the ‘weibo’ as a data source to collect
information on users’ activities. (The ‘weibo’, teeming with
more than 300 million users, is the biggest twitter-like
microblogging service in China). After analysis, we chose
the dinner activity as a research object. We collected
available weibo microblogs by a keyword filter, which
contains two keyword subsets: one refers to the specific
restaurant’s name: KFC, McDonalds, etc., whereas the other
refers to the set of words usually appearing in the restaurant
name: hot pot, restaurant, etc. An example of ‘weibo’ is
shown in Figure 15: it contains the restaurant’s name and
address, the user’s preference and visiting time.

Figure 15 An example of user’s Weibo (see online version
for colours)

Detailed quantitative information is necessary for each
restaurant, such as price, flavour and environment. The site
– www.dianping.com – is opted for as the restaurant’s
detailed quantitative data source. This is an online
independent third-party consumer service rating site, which
contains eight sorts of restaurant information: name,
price, flavour, service, type, etc., as shown in Figure 16. To
process the data in a unified way, the type of restaurant is
redefined based on nationality and fast food.

• The user’s favourite restaurants from ‘weibo’, along
with their detailed quantitative information construct
the training set for choosing a restaurant.

• In this scenario, a real Weibo user’s microblog
information is used with his permission. We collect the
data from 12 May 2011 to 2 May 2012. The clawer
has collected 278 available Weibo’s microblogs.
These chosen restaurants construct a set of training
data, some of which are shown in Table 2.

• To build the decision tree, we use J48 implementation
of the C4.5 decision tree in Weka (Hall et al., 2009),
which is an open source on data mining in Java
providing a collection of machine learning algorithms.
The learned decision tree providing the profitable
suggestion helps the user make a decision relied
on the training dataset. As shown in Figure 17, this tree
is built to recommend the restaurant for the chosen
user.

• The DT reasoner can be invoked based on Tao’s
schedule. In this scenario, when our context-aware
middleware finds that Tao is not in the place where he
is scheduled (he is not in a restaurant), it will remind
Tao and suggest a choice (a favourite restaurant) based
on his current location. The learned decision tree is
used to select his favourite restaurant from the list of
restaurants located nearby.

• The detailed information for the recommended
restaurant is written into an xml file shown in
Figure 18(a), and used in the Google map. In this way,
the user acquires a restaurant recommendation
on the Google map, which helps him/her find this
restaurant as shown in Figure 18(b). Various devices,
such as a smart phone and pad, can directly access the
recommended restaurant information on the map via
internet.

Figure 16 Restaurant information from www.dianping.com
(see online version for colours)

Table 2 Training dataset

No. Level Price Flavors Env. Serv. Type Pref.

1 3.5 39 22 13 13 Chinese Yes
2 4 15 25 16 17 Chinese No
3 4 27 19 18 19 Fast food Yes
4 3 41 18 12 12 Chinese No
5 5 60 25 25 31 Chinese Yes
6 3.5 422 16 20 19 Chinese No
7 5 56 25 23 24 Korea Yes
8 3.5 55 18 17 15 Japan No
9 3 24 16 17 15 Fast food Yes
10 4.5 117 23 26 20 Japan No
11 4 58 19 20 17 Fast food Yes
12 4 183 17 24 20 Chinese No
13 3 33 20 7 11 Chinese Yes
14 3 7 20 9 10 Chinese No

154 T. Xu et al.

5.2 Domestic activity application

Furthermore, this subsection will focus on explaining how
the HMM reasoner trains and works. We use the domestic
activity dataset from van Kasteren et al. (2008) to verify the
HMM reasoner. They employed 14 binary input sensors to
record a user’s seven kinds of daily activities: leaving the
house, using the toilet, taking a shower, going to bed,
preparing breakfast, preparing dinner and drinking in an
apartment as shown in Figure 19 from 25 February 2008 to
21 March 2008.

This annotated real-world dataset contains 245
activities and the corresponding binary input state as shown
in Figure 20.

Figure 17 The learned decision tree for choosing a restaurant
(see online version for colours)

Figure 18 The DT reasoner results: (a) detailed information in
xml and (b) recommended results in Google map
(see online version for colours)

(a)

(b)

This task is split into two parts: estimating process
parameters based on previous data (training data) and
using these parameters to infer the real-world process by
looking at the novel sensor reading. On the basis of Lim and
Dey’s (2010) work, we trained an HMM with a sequence
length of 5 min, and 1 min per sequence step. The Baum-
Welch algorithm (Baum et al., 1970) is used for training.
In this paper, we will not describe the train process. Detailed
information on the HMM can be referred to in Rabiner
(1989).

Figure 19 The floor plan of the test apartment (see online version
for colours)

Figure 20 The domestic activity dataset: (a) the state of 14 binary
input sensors and (b) user’s activities (see online
version for colours)

(a)

 A smart brain: an intelligent context inference engine for context-aware middleware 155

Figure 20 The domestic activity dataset: (a) the state of 14 binary
input sensors and (b) user’s activities (see online
version for colours) (continued)

(b)

The application takes 14 binary input sensors and infers
which activity (out of seven) the user is performing.
As we focus only on verifying the HMM reasoner, sensor
information is simulated in this example. We simulate a test
sensor data sequence, which is represented by a 15 × 14
matrix shown in Figure 21(a). The row represents
the situation of 14 sensors, whereas the column represents
the time slice. The data sequence is placed in context-aware
middleware successively. Then, the learned HMM
(parameters determined) reasoner carries out inference of
the activity sequence by calculating its probability given an
observation sequence (sensor data sequence). The Viterbi
(1967) algorithm is used to infer. The entire HMM process
is implemented based on jhmm in Java, and the final result
is shown in Figure 21(b). As mentioned earlier, the HMM
ruler should work all the time. These results and the
historical results are stored in the context knowledge base,
which can be used by various context-aware applications via
our context-aware middleware.

Figure 21 The HMM results for domestic activity: (a) the
simulated input data and (b) the printed results
(see online version for colours)

(a) (b)

6 Related work

The context-aware system is an answer to challenges
associated with service discovery, mobility, environmental
changes and context retrieval (Romero et al., 2008). The
Active Badge System (Want et al., 1992) is commonly
considered as the first research investigation into context
awareness. In this work, context information refers
primarily to location. From then on, a large number of
infrastructures have provided services for handling context.
Context inference always plays an important role in these
systems. The context toolkit, developed by Dey et al.
(2001), is a toolkit that supports development of context-
aware applications. The context interpreter part is used to
deduce high-level context information from low-level
information. CASS (Fahy and Clarke, 2004) supports
context-aware applications on hand-held computing devices
and other small mobile computing devices. The important
feature of CASS is that it supports abstraction of high-level
context and separate context based on inferences and
behaviours from the application code. CoBrA (Chen et al.,
2003) is one of the earliest systems using semantic web
technology to support context-aware pervasive computing.
The CoBrA inference engine is used in both types of
reasoning. Besides detecting and resolving inconsistent
knowledge, it can also infer context knowledge that cannot
be easily acquired from the physical sensors. The context
reasoner in SOCAM (Gu et al., 2004) supports two kinds of
reasoning: ontology reasoning and user-defined rule-based
reasoning. Truong and Dustdar (2009) have summarised
inference techniques supported by existing systems.
However, they found that context inference is not well
suited and that most systems are simply based on semantic
reasoning.

7 Conclusion

In recent work, more and more research revolves around the
‘activity’ context as opposed to the ‘location’ context.
We reviewed literature on activity context recognition in
three premier conferences held on context awareness in the
last 10 years, summarised all the methods and divided
research concerning activity context recognition into three
main facets: basic activity inference, dynamic activity
analysis and future activity recommendation. On the basis
of our previous work, we proposed an intelligent inference
engine for context-aware middleware, consisting of a basic
inference module and an intelligent inference module.
Besides satisfying requirements for checking context
consistency, our inference engine integrates the three most
popular methods for activity context recognition: rules,
decision tree and HMM. In addition, we designed a
mechanism for organising three algorithms to support
expandability and scalability for the intelligent inference
engine, and to provide different invoking mechanisms
according to different reasoner tasks. This provides a
solution for all facets of activity context recognition based
on our context-ware middleware. Finally, the two scenarios
are presented to describe how the inference engine works.

156 T. Xu et al.

With respect to the bus stop scenario, we extract a user’s
activity context from his social networks as a training set
with the user’s permission, to investigate the rules reasoner
and the DT reasoner. Concerning domestic activity, we
adopt the domestic activity dataset to verify the HMM
reasoner. However, intelligent inference failed to take into
consideration the context ambiguity problem, i.e., contexts
from the sensors are not always correct. The context
inference engine will reach the conclusion based on
inaccurate information, thus giving rise to incorrect actions
by the application, especially in the rules reasoner. We will
improve the context inference in this field to make our
system more robust and intelligent.

References
Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M. and

Steggles, P. (1999) ‘Towards a better understanding of
context and context-awareness’, Proceedings of the 1st
International Symposium on Handheld and Ubiquitous
Computing, HUC ’99, Springer-Verlag, London, UK,
pp.304–307.

Baldauf, M., Dustdar, S. and Rosenberg, F. (2007) ‘A survey on
context-aware systems’, Int. J. Ad Hoc Ubiquitous Comput.,
Vol. 2, pp.263–277.

Ballendat, T., Marquardt, N. and Greenberg, S. (2010) ‘Proxemic
interaction: designing for a proximity and orientation-aware
environment’, ACM International Conference on Interactive
Tabletops and Surfaces, ITS ’10, ACM, New York, NY,
USA, pp.121–130.

Baum, L., Petrie, T., Soules, G. and Weiss, N. (1970)
‘A maximization technique occurring in the statistical
analysis of probabilistic functions of Markov chains’, Ann.
Math. Stat., Vol. 41, pp.164–171.

Chen, H., Finin, T. and Joshi, A. (2003) ‘An intelligent broker for
context-aware systems’, Adjun. Proc. Ubicomp, pp.12–15.

David, B., Zhou, Y., Xu, T. and Chalon, R. (2011) ‘Mobile user
interfaces and their use in a smart city’, WorldComp’11,
Las Vegas, Nevada, USA, pp.383–388.

Dey, A.K., Abowd, G.D. and Salber, D. (2001) ‘A conceptual
framework and a toolkit for supporting the rapid prototyping
of context-aware applications’, Hum-Comput. Interact,
Vol. 16, pp.97–166.

Fahy, P. and Clarke, S. (2004) ‘CASS – a middleware for
mobile context-aware applications’, Workshop on Context
Awareness, MobiSys, Boston, USA, pp.304–308.

Geib, C.W., Maraist, J. and Goldman, R.P. (2008) ‘A new
probabilistic plan recognition algorithm based on string
rewriting’, ICAPS, pp.91–98.

Gu, T., Pung, H.K. and Zhang, D.Q. (2004) ‘A middleware
for building context-aware mobile services’, Vehicular
Technology Conference, 2004, VTC 2004-Spring, 2004 IEEE
59th., pp.2656–2660.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and
Witten, I.H. (2009) ‘The WEKA data mining software:
an update’, SIGKDD Explor Newsl., Vol. 11, pp.10–18.

Hu, D.H., Zheng, V.W. and Yang, Q. (2011) ‘Cross-domain
activity recognition via transfer learning’, Pervasive Mob.
Comput., Vol. 7, pp.344–358.

Korpipaa, P., Mantyjarvi, J., Kela, J., Keranen, H. and Malm, E-J.
(2003) ‘Managing context information in mobile devices’,
IEEE Pervasive Comput., Vol. 2, pp.42–51.

Krumm, J. (Ed.) (2009) Ubiquitous Computing Fundamentals,
1st ed., Chapman and Hall/CRC, London.

Lim, B.Y. and Dey, A.K. (2010) ‘Toolkit to support intelligibility
in context-aware applications’, Proceedings of the 12th ACM
International Conference on Ubiquitous Computing,
Ubicomp ’10, ACM, New York, NY, USA, pp.13–22.

Lin, L. (2006) Location-Based Activity Recognition, PhD Thesis,
University of Washington.

Lukowicz, P., Pentland, S. and Ferscha, A. (2012) ‘From context
awareness to socially aware computing’, IEEE Pervasive
Comput., Vol. 11, pp.32–41.

Pazzani, M., Muramatsu, J. and Billsus, D. (1996) ‘Syskill &
Webert: Identifying interesting web sites’, Proceedings of the
Thirteenth National Conference on Artificial Intelligence,
Vol. 1, AAAI’96, AAAI Press, pp.54–61.

Pollack, M.E., Brown, L., Colbry, D., McCarthy, C.E., Orosz, C.,
Peintner, B., Ramakrishnan, S. and Tsamardinos, I., (2003)
‘Autominder: an intelligent cognitive orthotic system for
people with memory impairment’, Robotics and Autonomous
Systems, Vol. 44, pp.273–282.

Rabiner, L. (1989) ‘A tutorial on hidden Markov models and
selected applications in speech recognition’, Proc. IEEE 77,
pp.257–286.

Romero, D., Parra, C., Seinturier, L., Duchien, L. and Casallas, R.
(2008) ‘An SCA-based middleware platform for mobile
devices’, Enterprise Distributed Object Computing
Conference Workshops, 2008 12th. Presented at the
Enterprise Distributed Object Computing Conference
Workshops, 12th, pp.393–396.

Schmidt, A., Beigl, M. and Gellersen, H. (1998) ‚There is
more to context than location’, Comput. Graph., Vol. 23,
pp.893–901.

Stojanovic, D. (2009) ‘Context-aware mobile and ubiquitous
computing for enhanced usability: adaptive technologies and
applications (premier reference source)’, Information Science
Reference, 1st ed., Hershey, PA.

Truong, H-L. and Dustdar, S. (2009) ‘A survey on
context-aware web service systems’, Int. J. Web Inf. Syst.,
Vol. 5, pp.5–31.

Vail, D.L., Veloso, M.M. and Lafferty, J.D. (2007) ‘Conditional
random fields for activity recognition’, Proceedings of the 6th
International Joint Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’07, ACM, New York, NY,
USA, pp.235:1–235:8.

Van Kasteren, T., Noulas, A., Englebienne, G. and Kröse, B.
(2008) ‘Accurate activity recognition in a home setting’,
Proceedings of the 10th International Conference on
Ubiquitous Computing, UbiComp ’08, ACM, New York, NY,
USA, pp.1–9.

Viterbi, A.J. (1967) ‘Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm’, IEEE Trans.
Inf. Theory, Vol. 13, pp.260–269.

 A smart brain: an intelligent context inference engine for context-aware middleware 157

Wang, X.H., Zhang, D.Q., Gu, T. and Pung, H.K. (2004)
‘Ontology based context modeling and reasoning using
OWL’, Proceedings of the Second IEEE Annual Conference
on Pervasive Computing and Communications Workshops,
PERCOMW ’04, IEEE Computer Society, Washington, DC,
USA, pp.18–23.

Want, R., Hopper, A., Falcão, V. and Gibbons, J. (1992) ‘The
active badge location system’, ACM Trans. Inf. Syst., Vol. 10,
pp.91–102.

Xu, T., David, B., Chalon, R. and Zhou, Y. (2011) ‘A context-
aware middleware for ambient intelligence’, Proceedings of
the Workshop on Posters and Demos Track, PDT ’11, ACM,
New York, NY, USA, pp.10:1–10:2.

