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Abstract: Recently, ‘activity’ context draws increased attention from researchers in context 
awareness. Existing context-aware middleware usually employ the rule-based method to, which 
is easy to build and also intuitive to work with. However, this method is fragile, not flexible 
enough, and is inadequate to support diverse types of tasks. In this paper, we surveyed the related 
literature in premier conferences over the past decade, reviewed the main activity context 
recognition methods, and summarised their three main facets: basic activity inference, dynamic 
activity analysis, and future activity recommendation. Based on our previous work, we then 
proposed an intelligent inference engine for our context-aware middleware. Besides satisfying 
requirements for checking context consistency, our inference engine integrates the three methods 
for activity context recognition to provide a solution for all facets of activity context recognition 
based on our context-aware middleware. 
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1 Introduction 
Almost 20 years earlier, Marc Weiser viewed the prospect 
of computers in the 21st century and proposed the 
pioneering notion of ubiquitous computing. Most of his 
visions have already been realised in the past two decades. 
Furthermore, one of his primary visions, namely that 
systems could adapt their functionality to a user’s activity 
and situation in the environment, has led to a new field: 
context awareness (Lukowicz et al., 2012). Today, context 
awareness, as one of the central themes in the Smart Space 
(also described as ambient intelligence), is attracting 
increasing attention from researchers. Context-aware 
systems are concerned with acquisition of context (e.g., 
using sensors to perceive a situation), abstraction and 
understanding of context (e.g., matching a perceived 
sensory stimulus to a context) and application behaviours 
based on the recognised context (e.g., triggering actions 
based on the context) (Schmidt et al., 1998). To achieve this 
goal, we need to incorporate the sensors, actuators, 
communication objects and computing devices required  
for the system. While low-level mechanisms and drivers  
are necessary, they must be encapsulated into the more 
common and higher-level view designed to collect, treat  
and disseminate information appropriately among these 
components. Namely, the system should take into account 
changes in context and propagate appropriate decisions  
(Xu et al., 2011). Context-aware middleware provides a 
feasible solution, which meets the aforementioned 
requirement. 

The holy grail of context awareness is to divine or 
understand human intent (Krumm, 2009). An intelligent 
system should be able to provide natural interaction between 
users and the physical environment. Also, a ‘smart’ context-
aware middleware is required to support development of the 
smart space. Context inference plays the role of the brain in 
context-aware middleware. Smart space needs a smart brain, 
namely an intelligent context inference engine. Context 
inference provides two main services: the first is to check 
context consistency, whereas the second is to determine or 
infer the user’s situation. Once the user’s situation has been 
inferred, the application can then take appropriate action 
(Krumm, 2009). In recent years, most context-aware 
middleware have adopted web ontology language (OWL) to 
build the ontology-based model, which provides an efficient 
solution to check context consistency. Consequently, 
research now focuses on the second service: infer the user’s 
situation (commonly referred to as activity). The existing 
context-aware middleware usually employs the rule-based 

method to infer user’s activity, such as the study conducted 
by Wang et al. (2004) concerning leveraging rules based on 
first-order logic. To better recognise the user’s activity, a 
large number of artificial intelligence methods are explored 
and used in context-aware computing. Korpipaa et al. 
(2003) use a naïve Bayes classifier to distinguish higher-
level contexts from lower-level contexts. The HMM is 
employed to recognise activities in a smart room (van 
Kasteren et al., 2008). Pollack et al. (2003) use a decision 
tree to make decisions about whether and when it is most 
appropriate to issue reminders for prescribed activities. 
However, these approaches only provide a possibility to 
solve the problem partly based on activity context 
recognition. None of them has considered integration of the 
approach into the context-aware system, which encourages 
collaborative work with other parts of the system. 

In this paper, we focus on designing a context inference 
engine, which supports activity context recognition and 
improves context-aware middleware intelligence. We first 
present our context-aware middleware. We then review all 
the methods relating to activity context recognition that 
have been published in the three premier conferences in the 
past decade. To go one step further, we conclude that 
activity context recognition consists of three facets:  
basic activity inference, dynamic activity analysis and future 
activity recommendation. Integrating these three most 
salient methods of activity context recognition used in 
context-aware applications via strategy patterns, we propose 
an intelligent inference engine based on our context-aware 
middleware. An invoking mechanism for the inference 
engine is designed to provide services and deal with tasks. 
This intelligent inference engine not only provides a 
solution for meeting current requirements in the field of 
activity context recognition, but can also be upgraded to 
meet future demands. 

The remainder of the paper is organised as follows: 
First, we describe our spatial-temporal ontology-based 
model. Second, we present the architecture of context-aware 
middleware working for the smart space. Third, we 
conclude as to the main problems in activity context 
recognition and summarise the main approaches already 
existing. Following these discussions, we propose an 
intelligent inference engine for our context-aware 
middleware. Furthermore, two scenarios are investigated to 
explain and verify the conceptual work. Finally, we 
conclude our work, discuss the pros and cons of our 
intelligent inference engine and envisage our future study 
prospects. 
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2 The spatial-temporal ontology-based model 

Before detailing context-aware middleware, we will 
describe our spatial-temporal ontology-based model. A 
context model, as a fundamental part of the context-aware 
system, aims at defining and storing context data in a 
machine-readable form Baldauf et al. (2007). Developing a 
flexible and useable context model that covers a wide range 
of possible contexts is a challenging task (Stojanovic, 2009). 
We adopt the ontology-based context model to construct our 
context-aware middleware. In the field of context 
awareness, ontology is a reference model for components 
and behaviours of context (Wang et al., 2004). The 
ontology-based model has a large number of good features 
for developing the context-aware system, such as 
knowledge sharing, knowledge reuse and logic inference. In 
particular, logic inference enables the application to use 
directly deduced high-level context information. 

From the spatial dimension, we employ a hierarchical 
structure to describe the user’s situation and circumstance 
based on OWL, which is an ontology markup language 
adopted by W3C as standard for semantic web. The 
structure is shown in Figure 1. The basic model defines 
generic conceptions and relationships in the Smart Space, 
which come up with a basic context structure. It has five 
interrelated basic classes: user, location, time, activity and 
device, as well as eight properties (relationships) among 
classes, which represent who, where, when, what and why. 
Basic context-aware ontology can be completed and 
upgraded by more precise information related to a particular 
application or application area. It is considered as the 
specific model, which can be reused and shared in different 
domains. 

Figure 1 The spatial-temporal ontology-based model 

 

The context temporal model is an attempt to organise 
context according to the temporal dimension. It reflects two 
primary classes: time and device shown in Figure 2. The 
time class provides three subclasses to describe the temporal 
relationship between user and activity. The device class uses 
the subclass ‘historical sensed’ to record historical context 
data, which can be used to analyse users’ activities and 
provide predictions and recommendations. 

The basic context-aware model is developed by context-
aware middleware designers, whereas the specific model is 
developed by context-aware application developers. 

Figure 2 The temporal model class 

 

3 Context-aware middleware 

Context-aware applications are becoming increasingly 
salient, and are also used prevalently in the areas of 
wearable computing, intelligent environments, context-
sensitive interfaces, etc. (Krumm, 2009). A generally 
accepted definition of context is given by Dey and Abowd 
(Abowd et al., 1999): “Any information that can be used to 
characterise the situation of an entity. An entity is a person, 
place or object that is considered relevant to the interaction 
between a user and an application, including the user and 
application themselves”. The context-aware system is 
defined as the system that uses the context to provide the 
relevant information and services to the user, where the 
relevancy depends on the user’s task. 

Development of context-aware applications is inherently 
complex. These applications adapt to the context 
information: physical context, computational context and 
user context/tasks (Ballendat et al., 2010). It requires low-
level mechanisms to integrate all sensors, actuators, 
communication objects and computing devices into the 
system. Then, we propose to create an application-
independent common high-level contextualisation making it 
possible to collect, process, interpret and propagate 
information with the context model and reasoning 
mechanisms. 

To implement this more in-depth approach of context-
aware services in the smart space, we have designed a 
context-aware middleware based on mobility, 
contextualisation and cooperation (MOCOCO), organised in 
two layers as shown in Figure 3. 

The low layer is a sort of Enterprise Service Bus. It 
allows services to be easily plugged in and out of the 
network without any impact on other components and 
without the need to restart the system or even stop running 
applications. In our paper, the context provider is the service 
used to obtain context from sensors, the web or other 
sources, as well as dispatching commands to actuators. The 
low layer provides a unified standard interface to achieve 
the core functions of service interaction: service registry, 
dynamic service discovery and service consumption. It also 
integrates interaction devices and a set of application 
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program interface (API) for different interaction modalities 
to support development of interaction approaches. 

Figure 3 Context-aware middleware architecture (see online 
version for colours) 

 

The versatile context interpreter (VCI) is a high layer of 
context-aware middleware, made up of four parts: context 
aggregator, inference engine, context knowledge base and 
query engine. It leverages the low layer’s basic services 
results to deliver and manage context-aware views and 
interpretations to deliver high-level information to the 
application. 

• The context aggregator is responsible for working with 
basic contextual data collected by the low layer. 

• The context knowledge base provides persistent  
storage for context through the use of relational 
databases, as well as supplying a set of library 
procedures for other components to query and modify 
context knowledge. 

• The context query engine offers two main services: The 
first is to handle queries from the application. It 
supports SPARQL, which is an resource description 
framework (RDF) query language, able to retrieve and 
manipulate data stored in OWL. The second is to 
invoke the context inference engine. When the 
application requests high-level context, it will invoke 
the context inference engine to generate the inferred 
context. 

• The intelligent inference engine is the central and 
intellectual component of our context-aware 
middleware. Its details will be presented in the next 
section. 

4 The intelligent inference engine 

Context inference, often described as context reasoning, 
refers to inferring further the implicit context from the 
explicit context. As we mentioned earlier, its main task 
focuses on two main aspects: one task is to check and solve 
inconsistencies in context data, whereas the other is to 

deduce high-level context information from low-level 
context data. The high-level context is commonly 
considered as the activity. 

With respect to context-aware computing, researchers 
focus on who’s, where’s, when’s and what’s (namely, what 
activities are occurring) of entities and use this information 
to determine the reason why a situation is occurring 
(Krumm, 2009). Research work on context awareness is 
simplified to achieve these five ‘w’. Among these ‘w’, the 
‘why’ is the destination, whereas the other four ‘w’ (who, 
where, when and what) represent four fundamental contexts: 
user, location, time and activity, respectively. With the  
rapid development of technology and widespread use  
of smart mobile devices and sensors, the first three 
fundamental contexts (user, location and time) are now 
relatively easily captured directly from context sources. 
However, recognising user’s activities continues to be 
difficult. 

To ensure better understanding of human intent, we 
propose an intelligent inference engine, consisting of a basic  
module and an intelligent module as shown in Figure 4.  
Besides satisfying the basic requirements, it can provide 
appropriate methods for different facets of activity context 
recognition, respectively. 

Figure 4 The inference engine structure 

 

The basic module’s main task is to check context 
consistency. We adopt the ontology-based context model to 
construct our context-aware system. It exhibits good 
features for developing the context-aware system, such as 
knowledge sharing, knowledge reuse and logic inference. 
Also, it paves the way for the basic inference module. OWL 
has a built-in reasoner based on description logic. This 
reasoner can fulfil the essence of logical requirements, 
which comprises concept satisfiability, class subsumption, 
class consistency and instance checking. Table 1 shows a 
partial basic reasoning rule. 

Table 1 The partial basic reasoning rule for OWL 

Transitive property P(x, y) and P(y, z) implies P(x,z) 
Symmetric property P(x, y) iff P(y, x) 
Functional property P(x, y) and P(x, z) implies y = z 
inverseOf P1 (x, y) iff P2(y, x) 
Inverse functional property P(y, x) and P(z, x) implies y = z 
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The intelligent module is responsible for deducing high-
level context. In our paper, high-level context mainly refers 
to activity. Our aim is to provide a solution supporting 
activity context recognition. 

Activity context recognition aims at inferring a user’s 
behaviour from observations such as sensor data (Hu et al., 
2011), and serves a variety of applications including 
medical care (Pollack et al., 2003), logistics service (Lin, 
2006), robot soccer (Vail et al., 2007), plan recognition 
(Geib et al., 2008), etc. Many researchers focus on finding 
the most efficient way to recognise user’s activities. On the 
basis of Lim and Dey’s (2010) work, we reviewed literature 
from three top-tier conferences on context-aware computing 
in recent years, including the ACM Conference on Human 
Factors in Computing Systems (CHI) from 2003 to 2012, 
the ACM International Conference on Ubiquitous 
Computing (Ubicomp) from 2004 to 2012 and the 
International Conference on Pervasive Computing 
(Pervasive) from 2004 to 2012. Fifty-nine papers relate to  
user activity recognition, involving seven algorithms: rules, 
decision tree (DT), Naïve Bayes (NB), HMM, support  
vector machine (SVM), k-nearest neighbour algorithm 
(kNN) and artificial neural networks (ANNs). The detailed 
statistical results are shown in Figure 5. 

Figure 5 The statistical results of the activity recognition 
algorithm (see online version for colours) 

 

We conclude on the research conducted into recognising 
user’s activity in three facets shown in Figure 6: basic 
activity inference, future activity recommendation and 
dynamic activity analysis. 

Figure 6 The three main facets of activity context recognition 

 

• Basic activity inference focuses on recognising the 
basic types of activity, such as working, sleeping and 
shopping. User’s activity can be deduced directly based 
on low-level context obtained from diverse context 
sources containing physical context sensors and virtual 
context source (web service). The method based on 
rules is used to infer the basic activity. 

• Future activity recommendation usually refers to 
recommending or predicting user’s future activity or 
choices. To achieve this, besides taking into 
consideration the user’s current situation (context), the 
context of the user’s previous similar behaviours 
(training data) must be analysed. The decision tree can 
ideally cope with this problem, and can be considered 
as a type of context-aware recommendation. 

• Dynamic activity analysis is responsible for analysing 
fine-grained activity compared with basic activity 
inference. There are two main solutions: the first 
employs the state-space model, which partitions the 
activity into state sequences and infers the type of 
activity (state sequence) based on the probability  
of an observed sequence such as Bayesian networks 
and HMM. The second solution relies on pattern 
recognition techniques, which extract patterns from 
activities and infer the type of activity based on 
different activity patterns, such as SVM and ANN. As it 
is similar to future activity recommendations, it also 
requires learning of process parameters from the 
previous activity information. 

We can observe that the three most popular methods are 
rules, DT and HMM. Each method has its own advantages 
and characteristics. We have analysed them (detailed 
information will be stated in the following sections) and 
found that all three methods can be leveraged to deal with 
these three facets, respectively. Moreover, these three 
methods mostly represent the mainstream solution on their 
actual facet. We integrate the three methods, namely rules, 
DT and HMM, into our context-aware middleware as our 
research focus. 

4.1 Rules 

‘Rules’ is an early attempt to infer user’s activity in context-
aware computing. ‘Rules’ refers to the method using a set of 
if–then rules to infer user’s activity based on first-order 
logic: if the devices sense a particular situation, then  
it can deduce the user’s activity. ‘Rules’ is based on  
general features of activity. It should be possible to  
obtain these chosen features of activity, namely low-level 
context, by physical sensors or other context sources.  
We employ a simple example as shown in Figure 7 to 
interpret it. 

‘Rules’ has a wide range of adaptabilities, which is 
usually designed to provide inference for almost all users. 
Furthermore, it is relatively intuitive and easy to work with. 
However, rules are rigid, meaning that they are also brittle  
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(Krumm, 2009): even trifling exceptions will generate some 
errors. Nevertheless, since this method is easy to implement 
in context-aware applications, it continues to be an effective 
and widely used method to infer user’s activity. We 
leverage it to work on basic activity inference. 

Besides rules, the common alternative approaches 
involve artificial intelligence algorithms. DT and HMM 
both belong to this category, and each has its own characters 
to focus on different facets. 

Figure 7 This is an example of rules 

 

4.2 Decision Tree (DT) 

The decision tree is a classic algorithm in the field of 
artificial intelligence shown in Figure 8. It is a predictive 
model that maps observations on an item to conclude on the 
item’s target value. Decision trees are learned by recursively 
partitioning training data into subgroups until those 
subgroups contain only instances of a single class. 
Processing for partitioning data runs on the values of item 
attributes. The choice of the item attribute on which to 
operate the partition is generally made according to the 
entropy criterion and the information gain. The entropy of S 
can be described in function (1), which is a measurement of 
the expected encoding length in bits. 

2Entropy(S) (s) log (s)p p= −∑  (1) 

Figure 8 The classic example of the decision tree 

 

The information gain is the expected reduction in entropy 
caused by partitioning the examples according to this 
attribute. The information gain, Gain(S, A) of an attribute A, 
relative to a collection of examples S, is defined as: 

Value(A)

Gain( , ) Entropy( ) Entropy( )v
v

v

S
S A S S

S∈

= − ∑  (2) 

where Values(A) is the set of all possible values for attribute 
A and Sv is the subset of S for which attribute A has the 
value v. The information gain is used to select the best 
attribute at each step for growing the tree. More clearly, the 
classic example is shown here. 

The decision tree is simple to understand and interpret. 
Users are able to understand decision tree models following 
a brief explanation. Decision trees are popular for their 
simplicity of use, interpretability and good runtime 
performance. They are commonly adopted in content-based 
recommender systems (Pazzani et al., 1996; Pollack et al., 
2003), which can be employed to give a recommendation 
for user’s activity. 

4.3 Hidden Markov model (HMM) 

The HMM is one of the most accepted algorithms in 
temporal recognition tasks, including speech, gesture, 
activity, etc. The HMM is a statistical Markov model, which 
can recover a data sequence that is not immediately 
observable. In human activity recognition, complex  
activities have a temporal structure. The time series data 
obtained by sensors is divided into time slices of constant 
length, where each slice is labelled with a state of activity. 
A generic HMM for activity is illustrated in Figure 9. The 
shaded nodes (A) represent observable variables (data from 
sensors), whereas the white nodes (Q) represent hidden 
variables (state of activity). t in these two functions 
represents the time of state, P is the state of transition 
probabilities and Q is the observation probability. 

Figure 9 The simple example of the HMM for activity 
recognition 

 

The HMM can learn the parameters ‘P, Q’ of the 
probabilistic model from the training data. Inference, which 
best labelled sequence explaining the new coming data from 
the sensors, is depended on calculating a maximum of the 
conditional probability 1 2 3 1 2 3( , , ... | , , ...) :P a a a o o o  

1 2 3

1 2 3 1 2 3 1 2 3
all , , ...

, , ... ( , , ... | , , ...)
a a a

a a a ArgMax P a a a o o o=  (3) 

where ai presents a state of activity and oi refers to 
observable variables from the sensors. HMM is rapidly 
gaining ground in dynamic activity analysis. 

4.4 Organisation of three algorithms 

Our context-aware middleware enables application 
designers to concentrate on the development of application 
logic. The intelligent inference engine takes into account 
two aspects of design: expandability and scalability. Rules, 
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DT and HMM play important roles in basic activity 
inference, future activity recommendation and dynamic 
activity analysis, respectively. The three algorithms are 
related to various implementation methods. We adopt the 
strategy pattern to organise the three algorithms. This 
encapsulates the algorithm into separate classes, which 
enable the context-aware application developer to vary the 
algorithm independently from the context and to plug  
in a new one at runtime. The strategy pattern offers  
an alternative to conditional statements for selecting  
desired behaviour, which makes the three algorithms 
interchangeable. It gives this module flexibility, so that 
context-aware application developers can alter and extend 
the module. 

We define a universal interface: ‘InferBehaviour’. 
Context-aware application developers can add other 
algorithms without affecting the original ones, as long  
as the algorithms employ this interface. Moreover, if 
context-aware application developers want to adopt 
different inference methods to deal with different situations, 
they just invoke the function with the same name based on 
this interface, and do not need to use the actual algorithm. 
The partial UML model is shown in Figure 10. 

Figure 10 The partial UML of the inference engine 

 

4.5 The invoking mechanism 

The invoking mechanism refers to how and when the 
context-aware middleware runs the inference engine. 
According to different reasoner tasks in the intelligent 
inference engine, we present different methods for the 
reasoners, respectively. 

In the basic module, the OWL reasoner’s main task is to 
check context consistency. It is invoked when the new 
context model is added, such as adding a new specific 
model. In the intelligent module, owing to the different 
methods of activity context recognition, the invoking 
mechanism is more complex than the basic module. 

Concerning the rules reasoner, we design a query 
invoking mechanism that enables the rules reasoner to work 
when receiving the query from an external service, such as 
context-aware applications. There is a very interesting 
phenomenon, i.e., the property exists in almost all the query 
statements: for example: ‘?s ex:hasLocated ex:Room3’. 
Furthermore, the property is like a linking point of the 
objects, the amount of which is much less than the object 
itself. So, these properties are defined as the keywords, 
which are used to trigger the specific users’ rules set in the 

rules reasoner. When a query statement arrives, the context-
aware middleware reacts: it parses the query statement, then 
tries to match keywords. If it succeeds, the basic inference 
engine is invoked, while, on the contrary, if it fails, it 
searches for the context database directly. The entire flow is 
shown in Figure 11. 

With respect to the DT reasoner, we present a schedule 
invoking mechanism, which invokes the DT reasoner based 
on the user’s schedule. The DT reasoner is in charge of 
future activity recognition, which works with the user’s 
schedule. When the system finds that the user is not in the 
place where he/she is scheduled, the system reminds 
him/her and gives a suggested choice based on the user’s 
current location. Figure 12 explains the flow of schedule of 
the trigger mechanism. 

Figure 11 The flow chart of the query invoking mechanism 

 

Figure 12 The flow chart of the schedule invoking mechanism 
(see online version for colours) 

 

We enable the HMM reasoner to always work when the 
middleware system is running, owing to the requirements of 
the reasoner’s algorithm and task. This provides the activity 
sequence inference based on the sequence sensor data, and 
thus requires time series data from sensors. The inference 
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results and the historical results can be stored in the context 
knowledge base. The context-aware application can employ 
the results directly based on different requirements. 

5 Scenario and implementation 

In this section, we propose two scenarios (applications)  
to explain and verify how our intelligent inference  
engine deals with three facets of problems concerning  
user activity recognition. The bus stop scenario involves  
the rules reasoner and the DT reasoner, while the  
domestic activity application is used to verify the HMM 
reasoner. 

5.1 Bus stop scenario 

The bus stop application is a typical application of the Smart 
City (David et al., 2011). In our previous work, we 
organised all activities around or in relation to the bus stop 
shown in Figure 13. The bus stop can provide hot spot 
services and location-based services. To explain more 
clearly how context-aware middleware works, we present 
the bus stop scenario as follows: after an international 
conference, Tao is taking the bus back to his hotel. He is 
tired, hungry and only wants to have his favourite meal: 
roast chicken. However, he has never been to this city 
before and knows nothing about it. While he is fantasizing 
about this food, the bus arrives at the bus stop. ‘Oh-la-la!’ 
Tao gets off the bus and shouts out with excitement. An 
avatar, recognising him (by the collection of his 
identification data) in the large public screen, speaks his 
native language to him with the subtitles popping up: 
“Welcome! The roast chicken restaurant is about 300m 
away from this bus stop. If you want to book a seat, please 
wave your hand to me… 

Figure 13 The bus stop scenario (see online version for colours) 

 

The context-aware middleware collects contextual 
information from various interaction devices (public screen, 
etc.), techniques (gesture recognition, markers or face 
recognition, etc.) and sensors (camera, RFID, QR codes, 
etc.) for the relevant application. The work process of 
context-aware middleware for this scenario is as follows: 

When Tao steps onto a bus and scans his traffic card (RFID 
card), his public profile is transferred to context-aware 
middleware at the bus stop via internet. It deduces Tao’s 
current activity: taking the bus. Then, it checks Tao’s 
schedule to find Tao’s next activity, having dinner, and 
searches all the restaurants near the bus stop to recommend 
him a potential favourite restaurant. The camera fixed at the 
bus stop distinguishes Tao from the other passengers (face 
recognition techniques allowed by Tao’s profile), and then 
confirms the reservation by Tao’s hand gestures (gesture 
recognition techniques). 

The intelligent inference engine plays an important role 
in the bus stop scenario. To obtain the user’s activity 
context, it uses two reasoners: the rules reasoner and the DT 
reasoner. The rules reasoner is responsible for inferring 
Tao’s activity based on a rule set. Therefore, application 
designers should define first-order logic rules for specific 
activities, respectively, based on related low-level contexts 
that can be easily gotten from environments. To simplify 
understanding, Figure 14 lists some rules that we define for 
the bus stop scenario. 

Figure 14 The sample rules 
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The decision tree focuses on recommending the  
potential favourite restaurant to Tao. To achieve this 
recommendation, it requires these three steps: collecting 
training data, building the decision tree and providing the 
predictive recommendation. 

Collecting training data is one of the most important 
tasks for the DT reasoner. This requires collecting  
accurate and available information on the previous activities 
of each user. This has been considered a tough task in the 
past, since it is hard to let the user wear diverse sensors to 
travel around for a long time, only to collect raw training 
data. The prevalence of social networks provides a possible 
solution to this problem. Increasingly, people are posting 
their daily activities on their own social networks as part of 
life. This applies in particular to the microblog, whose 
content is typically smaller in both actual and aggregate file 
size. It is convenient for users to post their activity via 
mobile devices anywhere and anytime. 

We chose the ‘weibo’ as a data source to collect 
information on users’ activities. (The ‘weibo’, teeming with 
more than 300 million users, is the biggest twitter-like 
microblogging service in China). After analysis, we chose 
the dinner activity as a research object. We collected 
available weibo microblogs by a keyword filter, which 
contains two keyword subsets: one refers to the specific 
restaurant’s name: KFC, McDonalds, etc., whereas the other 
refers to the set of words usually appearing in the restaurant 
name: hot pot, restaurant, etc. An example of ‘weibo’ is 
shown in Figure 15: it contains the restaurant’s name and 
address, the user’s preference and visiting time. 

Figure 15 An example of user’s Weibo (see online version  
for colours)  

 

Detailed quantitative information is necessary for each 
restaurant, such as price, flavour and environment. The site 
– www.dianping.com – is opted for as the restaurant’s 
detailed quantitative data source. This is an online 
independent third-party consumer service rating site, which 
contains eight sorts of restaurant information: name,  
price, flavour, service, type, etc., as shown in Figure 16. To 
process the data in a unified way, the type of restaurant is 
redefined based on nationality and fast food. 

• The user’s favourite restaurants from ‘weibo’, along 
with their detailed quantitative information construct 
the training set for choosing a restaurant. 

• In this scenario, a real Weibo user’s microblog 
information is used with his permission. We collect the 
data from 12 May 2011 to 2 May 2012. The clawer  
has collected 278 available Weibo’s microblogs.  
These chosen restaurants construct a set of training 
data, some of which are shown in Table 2. 

• To build the decision tree, we use J48 implementation 
of the C4.5 decision tree in Weka (Hall et al., 2009), 
which is an open source on data mining in Java 
providing a collection of machine learning algorithms. 
The learned decision tree providing the profitable 
suggestion helps the user make a decision relied  
on the training dataset. As shown in Figure 17, this tree 
is built to recommend the restaurant for the chosen 
user. 

• The DT reasoner can be invoked based on Tao’s 
schedule. In this scenario, when our context-aware 
middleware finds that Tao is not in the place where he 
is scheduled (he is not in a restaurant), it will remind 
Tao and suggest a choice (a favourite restaurant) based 
on his current location. The learned decision tree is 
used to select his favourite restaurant from the list of 
restaurants located nearby. 

• The detailed information for the recommended 
restaurant is written into an xml file shown in  
Figure 18(a), and used in the Google map. In this way, 
the user acquires a restaurant recommendation  
on the Google map, which helps him/her find this 
restaurant as shown in Figure 18(b). Various devices, 
such as a smart phone and pad, can directly access the 
recommended restaurant information on the map via 
internet. 

Figure 16 Restaurant information from www.dianping.com  
(see online version for colours) 

 

Table 2 Training dataset 

No. Level Price Flavors Env. Serv. Type Pref.

1 3.5 39 22 13 13 Chinese Yes 
2 4 15 25 16 17 Chinese No 
3 4 27 19 18 19 Fast food Yes 
4 3 41 18 12 12 Chinese No 
5 5 60 25 25 31 Chinese Yes 
6 3.5 422 16 20 19 Chinese No 
7 5 56 25 23 24 Korea Yes 
8 3.5 55 18 17 15 Japan No 
9 3 24 16 17 15 Fast food Yes 
10 4.5 117 23 26 20 Japan No 
11 4 58 19 20 17 Fast food Yes 
12 4 183 17 24 20 Chinese No 
13 3 33 20 7 11 Chinese Yes 
14 3 7 20 9 10 Chinese No 
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5.2 Domestic activity application 

Furthermore, this subsection will focus on explaining how 
the HMM reasoner trains and works. We use the domestic 
activity dataset from van Kasteren et al. (2008) to verify the 
HMM reasoner. They employed 14 binary input sensors to 
record a user’s seven kinds of daily activities: leaving the 
house, using the toilet, taking a shower, going to bed, 
preparing breakfast, preparing dinner and drinking in an 
apartment as shown in Figure 19 from 25 February 2008 to 
21 March 2008. 

This annotated real-world dataset contains 245  
activities and the corresponding binary input state as shown 
in Figure 20. 

Figure 17 The learned decision tree for choosing a restaurant  
(see online version for colours) 

 

Figure 18 The DT reasoner results: (a) detailed information in 
xml and (b) recommended results in Google map  
(see online version for colours) 

 
(a) 

 
(b) 

 
 
 

This task is split into two parts: estimating process 
parameters based on previous data (training data) and  
using these parameters to infer the real-world process by 
looking at the novel sensor reading. On the basis of Lim and 
Dey’s (2010) work, we trained an HMM with a sequence 
length of 5 min, and 1 min per sequence step. The Baum-
Welch algorithm (Baum et al., 1970) is used for training.  
In this paper, we will not describe the train process. Detailed 
information on the HMM can be referred to in Rabiner 
(1989). 

Figure 19 The floor plan of the test apartment (see online version 
for colours) 

 

Figure 20 The domestic activity dataset: (a) the state of 14 binary 
input sensors and (b) user’s activities (see online 
version for colours) 

 
(a) 
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Figure 20 The domestic activity dataset: (a) the state of 14 binary 
input sensors and (b) user’s activities (see online 
version for colours) (continued) 

 
(b) 

The application takes 14 binary input sensors and infers 
which activity (out of seven) the user is performing.  
As we focus only on verifying the HMM reasoner, sensor 
information is simulated in this example. We simulate a test 
sensor data sequence, which is represented by a 15 × 14 
matrix shown in Figure 21(a). The row represents  
the situation of 14 sensors, whereas the column represents 
the time slice. The data sequence is placed in context-aware 
middleware successively. Then, the learned HMM 
(parameters determined) reasoner carries out inference of 
the activity sequence by calculating its probability given an 
observation sequence (sensor data sequence). The Viterbi 
(1967) algorithm is used to infer. The entire HMM process 
is implemented based on jhmm in Java, and the final result 
is shown in Figure 21(b). As mentioned earlier, the HMM 
ruler should work all the time. These results and the 
historical results are stored in the context knowledge base, 
which can be used by various context-aware applications via 
our context-aware middleware. 

Figure 21 The HMM results for domestic activity: (a) the 
simulated input data and (b) the printed results  
(see online version for colours) 

 
(a) (b) 

6 Related work 

The context-aware system is an answer to challenges 
associated with service discovery, mobility, environmental 
changes and context retrieval (Romero et al., 2008). The 
Active Badge System (Want et al., 1992) is commonly 
considered as the first research investigation into context 
awareness. In this work, context information refers 
primarily to location. From then on, a large number of 
infrastructures have provided services for handling context. 
Context inference always plays an important role in these 
systems. The context toolkit, developed by Dey et al. 
(2001), is a toolkit that supports development of context-
aware applications. The context interpreter part is used to 
deduce high-level context information from low-level 
information. CASS (Fahy and Clarke, 2004) supports 
context-aware applications on hand-held computing devices 
and other small mobile computing devices. The important  
feature of CASS is that it supports abstraction of high-level 
context and separate context based on inferences and 
behaviours from the application code. CoBrA (Chen et al., 
2003) is one of the earliest systems using semantic web 
technology to support context-aware pervasive computing. 
The CoBrA inference engine is used in both types of 
reasoning. Besides detecting and resolving inconsistent 
knowledge, it can also infer context knowledge that cannot 
be easily acquired from the physical sensors. The context 
reasoner in SOCAM (Gu et al., 2004) supports two kinds of 
reasoning: ontology reasoning and user-defined rule-based 
reasoning. Truong and Dustdar (2009) have summarised 
inference techniques supported by existing systems. 
However, they found that context inference is not well 
suited and that most systems are simply based on semantic 
reasoning. 

7 Conclusion 

In recent work, more and more research revolves around the 
‘activity’ context as opposed to the ‘location’ context.  
We reviewed literature on activity context recognition in 
three premier conferences held on context awareness in the 
last 10 years, summarised all the methods and divided 
research concerning activity context recognition into three 
main facets: basic activity inference, dynamic activity 
analysis and future activity recommendation. On the basis 
of our previous work, we proposed an intelligent inference 
engine for context-aware middleware, consisting of a basic 
inference module and an intelligent inference module. 
Besides satisfying requirements for checking context 
consistency, our inference engine integrates the three most 
popular methods for activity context recognition: rules, 
decision tree and HMM. In addition, we designed a 
mechanism for organising three algorithms to support 
expandability and scalability for the intelligent inference 
engine, and to provide different invoking mechanisms 
according to different reasoner tasks. This provides a 
solution for all facets of activity context recognition based 
on our context-ware middleware. Finally, the two scenarios 
are presented to describe how the inference engine works. 
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With respect to the bus stop scenario, we extract a user’s 
activity context from his social networks as a training set 
with the user’s permission, to investigate the rules reasoner 
and the DT reasoner. Concerning domestic activity, we 
adopt the domestic activity dataset to verify the HMM 
reasoner. However, intelligent inference failed to take into 
consideration the context ambiguity problem, i.e., contexts 
from the sensors are not always correct. The context 
inference engine will reach the conclusion based on 
inaccurate information, thus giving rise to incorrect actions 
by the application, especially in the rules reasoner. We will 
improve the context inference in this field to make our 
system more robust and intelligent. 
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