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Abstract
Objective. Due to individual differences in electroencephalogram (EEG) signals, the learning model
built by the subject-dependent technique from one person’s data would be inaccurate when applied
to another person for emotion recognition. Thus, the subject-dependent approach for emotion
recognition may result in poor generalization performance when compared to the
subject-independent approach. However, existing studies have attempted but have not fully utilized
EEG’s topology, nor have they solved the problem caused by the difference in data distribution
between the source and target domains. Approach. To eliminate individual differences in EEG
signals, this paper proposes the domain adversarial graph attention model, a novel EEG-based
emotion recognition model. The basic idea is to generate a graph using biological topology to
model multichannel EEG signals. Graph theory can topologically describe and analyze EEG
channel relationships and mutual dependencies. Then, unlike other graph convolutional networks,
self-attention pooling is used to benefit from the extraction of salient EEG features from the graph,
effectively improving performance. Finally, following graph pooling, the domain adversarial model
based on the graph is used to identify and handle EEG variation across subjects, achieving good
generalizability efficiently.Main Results.We conduct extensive evaluations on two benchmark data
sets (SEED and SEED IV) and obtain cutting-edge results in subject-independent emotion
recognition. Our model boosts the SEED accuracy to 92.59% (4.06% improvement) with the
lowest standard deviation (STD) of 3.21% (2.46% decrements) and SEED IV accuracy to 80.74%
(6.90% improvement) with the lowest STD of 4.14% (3.88% decrements), respectively. The
computational complexity is drastically reduced in comparison to similar efforts (33 times lower).
Significance.We have developed a model that significantly reduces the computation time while
maintaining accuracy, making EEG-based emotion decoding more practical and generalizable.

1. Introduction

The study of emotion recognition within computer
science is a continuing endeavor. The findings and
products of this emerging focus are increasingly being
applied to education, digital games, e-commerce,
advertising, e-health and many other areas. Electro-
encephalogram (EEG) has been suggested as a prom-
ising tool to investigate human emotions since it
can directly and precisely reflect cognitive and emo-
tional states at relatively low costs. As a result, EEG-
based emotion recognition has attracted considerable
research attention and interest.

However, studies in which deep learning
algorithms are applied to EEG-based subject-
independent emotion recognition are unsatisfact-
ory. First, multichannel EEG signals have a structure
based on biological topography belonging to a non-
Euclidean domain. Directly applying deep learning
methods to EEG-based recognition does not work
well since these methods are designed for computer
vision and natural language processing tasks. Second,
EEG signals vary significantly between individuals,
leading to different distributions of the source and
target domains. This makes it challenging to achieve
good performance across subjects.
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The human brain’s structural and functional sys-
tems have features of biological topography. Graph
theory can topologically describe and analyze rela-
tionships and mutual dependencies between chan-
nels of EEG. The graph neural networks (GNNs) [1]
make it promising to solve the classification problems
on EEG data. Based on the graph, many research-
ers have made a great effort to solve these problems
[2, 3]. These graph-based methods try to learn and
extract the most salient features from the whole high-
dimensional graph feature space generated by EEG
data. Although some existing research has started to
recognize the critical role of EEG channel topology,
this structure is not fully utilized to effectively learn
salient EEG features.

Most current recognition methods do not per-
form well when EEG training and testing data are
from different individuals. For EEG-based emotion
recognition, the data distributions of the source and
target domains are different. This issue can be con-
sidered domain adaptation. Ganin et al [4] proposed
domain-adversarial neural network (DANN) train-
ing to solve the cross-subject classification problem.
Inspired by the idea of DANN, many studies have
attempted to solve the problem and have achieved
sigificant success [3, 5, 6]. However, there is still con-
siderable room to improve the performance.

To address the two issues mentioned above in
subject-independent emotion recognition, we pro-
pose the domain adversarial graph attention model
(DAGAM), a novel EEG-based emotion recognition
model. First, we model EEG signals using a graph
based on biological topology. Graph convolutional
networks (GCNs)with self-attention pooling are then
used to extract EEG features strongly related to emo-
tions. Finally, the graph-based domain adversarial
model is used to identify emotions across subjects
after graph pooling. The following are the significant
contributions:

• The basic idea of DAGAM is to generate a graph
to model multichannel EEG signals using biolo-
gical topology. The use of graph attention neural
networks (GANNs) effectively explores the rela-
tionships among multiple EEG channels for emo-
tion recognition. Unlike otherGCNs, self-attention
pooling is applied to benefit salient EEG fea-
ture extraction from the graph, which effectively
improves the performance.

• The domain adversarial (DA) model based on the
graph is employed to identify and handle EEG vari-
ations across subjects. Combining DA and GANN,
the source domain and the target domain can adapt
to each other.

After evaluating DAGAM on two public emo-
tion EEG data sets, SEED [7] and SEED IV [8],
we found that our model achieves the state-of-the-
art (SOTA) results in subject-independent emotion

recognition, reaching a superior accuracy of per-
formance with the lowest standard deviation (STD)
(SEED: 92.59%/3.21%, SEED IV: 80.74%/4.14%)
compared to other methods. Compared to other
studies [3] in the same field, the computational com-
plexity is drastically decreased (33 times lower). This
model adds to the subject-independent method of
emotion recognition using EEG, which is a signific-
ant improvement over the current approaches.

2. Related work

EEG-based emotion recognition has received
increased attention in recent years. The methods can
be categorized into two groups. One group focuses
on finding crucial features. Shi et al [9] proposed
a novel feature called differential entropy (DE) for
EEG-based vigilance estimation. Jenke et al [10]
reviewed a wide range of features to attempt to find
suitable features for relevant emotions. Wang et al
[11] compared three existing EEG features: power
spectrum, wavelet and nonlinear dynamical ana-
lysis for improving emotion recognition. The other
group is committed to proposing better classification
algorithms. Petrantonakis et al proposed a robust
emotion recognition method based on higher-order
crossing analysis. Zhang et al [12] proposed a heur-
istic variational pathway reasoning method to deal
with EEG-based emotion recognition. Xu et al [13]
proposed a dynamic adaptive convolutional quorum
voting approach for variable-length EEG data.

EEG-based emotion recognition typically consists
of two approaches: subject-dependent and subject-
independent. When people are exposed to the same
emotional stimulus, individual differences may cause
different physiological responses and patterns. Thus,
the classifier derived from a single subject was
unable to perform well in the multiple-subject con-
text, especially when physiological responses to the
same emotion varied significantly between subjects.
Subject-dependent refers to the way that each clas-
sification model is built by only a single person.
This approach has never been widely accepted due
to its specificity. Recently, the subject-independent
approach has drawn more attention as a means of
achieving universality. This cross-subject approach
refers to the way that the classification model is
derived from mixed subjects [14]. For example, Li
et al [15] proposed a multisource transfer learn-
ing method for cross-subject EEG emotion recogni-
tion. Li et al [16] proposed a bi-hemisphere domain
adversarial neural network (BiDANN) model, which
achieves good performance on cross-subject recog-
nition. However, compared to the performance of
subject-dependent emotion recognition, there is con-
siderable room for improvement in the subject-
independent approaches.

After the first GNNwas proposed in 2009 [1], dif-
ferentGNNswere applied to different fields. EEGdata
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are considered to belong to non-Euclidean domains,
which can be represented as a graph. Graph mod-
els contain rich relational information [17] and can
reflect the connections between different regions of
the brain. At present, many researchers attempt to
apply it to the domain of EEG-based emotion recog-
nition. Song et al [2] proposed a novel dynamical
graph convolutional neural network. Zhong et al
[3] proposed a regularized graph neural network
(RGNN) for EEG-based emotion recognition, which
extracts both local and global features among differ-
ent EEG channels based on the biological topology
among different brain regions. These methods only
benefit some known biological features but do not try
to use unknown crucial internal connections and fea-
tures via learning. A direction for future research is
how to use the graph models and attention mechan-
isms to find the salient features of EEG signals related
to emotions.

DANN [4] was the first work and was demon-
strated to be successful in solving two specific classi-
fication problems in 2016. After that, DANN gained
increased attention and was used in emotion recog-
nition. Li et al [18] applied deep adaptation network
(DAN) to eliminate the individual differences in EEG
signals. Luo et al [6] proposed a novel Wasserstein
generative adversarial network domain adaptation
framework for building cross-subject EEG-based
emotion recognition models. Bao et al [5] pro-
posed a two-level domain adaptation neural network
(TDANN) to construct a transfer model for EEG-
based emotion recognition. Zhao et al [19] proposed
a plug-and-play domain adaptation method for deal-
ing with individual differences. These studies point
out the research direction for subject-independent
emotion recognition.

3. DAGAM

The structure of the DAGAM is shown in figure 1.
It contains three main parts: EEG data modeling
based on the graph, GANNs, and domain adversarial
based on the graph. First, the EEG data are modeled
based on EEG channel dependencies. Next, a graph
attention neural network is proposed to extract the
core features and discard the unimportant channels in
the graph structure. Finally, domain adversarial based
on the graph helps us to handle cross-subject EEG
variations, enabling good performance in subject-
independent emotion recognition. The details of each
part are provided as follows.

3.1. EEGmodeling based on the graph
EEG data are collected using an EEG cap based on the
10–20 system. Each electrode position represents the
surface division of the brain, which interconnects and
influences each other. Traditional convolution neural
networks cannot directly benefit from this biological

topology. GNNs provide an opportunity to tackle this
issue.

The first step is to model EEG signals using the
graph. A basic graph can be expressed as a set of ver-
tices and edges, denoted as G= (V,E), where V is
the set of vertices and E is the set of edges. In our
study, the vertices set can be expressed as the matrix
X ∈ RN×D, and the edge set can be expressed as the
adjacency matrix A ∈ RN×D, where N represents the
number of EEG channels and D represents EEG data
over time.

A is used to reflect the biological topography
of EEG and indicates the relationship between EEG
channels. The 3D coordinates of each electrode are
obtained based on a 3D spatial modeling of the 10–
20 system based on calculating the Euclidean dis-
tance. To correctly reflect this kind of relationship, we
attempt to define the elements of the adjacency mat-
rix based on the method proposed by [3], as follows:

Aij =min

(
1,

σ

d2ij

)
, (1)

where dij denotes the physical distance between chan-
nels i and j, and σ is a constant, used to calibrate
the weight Aij, which can fall within (0,1). A suitable
value of σ is set according to the experiment in sub-
section 4.3.1, as shown in table 4.

Nine pairs of global connections (FP1–FP2, AF3–
AF4, F5–F6, FC5–FC6, C5–C6, CP5–CP6, P5–P6,
PO5–PO6, O1–O2) are added to the adjacency mat-
rix to improve network efficiency. Previous studies
have reported that global channels reflect the asym-
metry of neuronal activity between the left and right
hemispheres, which is essential for EEG-based emo-
tion recognition. For instance, Schmidt and Trainor
[20] found that the pattern of asymmetrical frontal
EEG activity helped to distinguish the valence of emo-
tion. Work [21] proposed an EEG feature named DE
for emotion recognition, which was extracted from
symmetrical electrodes. Furthermore, based on the
asymmetric properties in emotion processing, Zheng
and Lu [22] found that four selected channels (FT7,
FT8, T7 and T8) can achieve comparably high and
stable accuracy in the emotion recognition task. We
initialize the global inter-channel relationship in A to
[−1,0] in order to use this information.

3.2. GANNs
Graph structure helps us to model EEG data. How-
ever, long-period EEG data with a complicated graph
structure bring a high computational cost for emo-
tion recognition. The pooling method considers fea-
tures both in the channels and the whole graph
structure and removes the influence of unimportant
nodes. It attempts to use a reasonable number of para-
meters to obtain better graph classification perform-
ance. Inspired by thework of [23], we adopted a graph
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Figure 1. Structure of the DAGAM, consisting of three parts: graph modeling, feature extraction and domain adversarial based on
the graph.

pooling method based on self-attention, called SAG-
Pool, to extract crucial features from EEG data. The
detailed steps are shown as follows:

First, the EEG data are processed by three layers of
GNN to obtain the self-attention score. A widely used
GNN model, GCN [24], which is implemented here,
is formulated as follows:

Score= σ(L̃symXWatt), (2)

where σ is the activation function of the layer net-
work, andWatt is a weighted matrix used to perform
the affine transformation on the input graph signal.
L̃sym is the re-normalized Laplacian matrix following
[24].

The index and Scoremask of self-attention graph
pooling can be obtained as follows:

index= top− rank(Score, [kN])
Scoremask = Scoreindex, (3)

where k ∈ (0,1] is the proportion of nodes retained
and top− rank is the function that returns the indices
of the top kN values based on the self-attention score.
N is the total number of nodes. Score is used to select
the nodes with the top proportion k and index is
an indexing operation on Score to update the mask:
Scoremask.

Next, we perform a pooling operation on fea-
ture data using GCN. The new feature matrix and
the corresponding adjacency matrix are calculated as
follows:

X ′ = Xindex

Xout = X ′ ⊙ Scoremask
Aout = Aindex,index

, (4)

where ⊙ represents the broadcasted element-wise
product,Xout is the new featurematrix andAout refers
to the corresponding adjacency matrix.

Finally, a readout layer is provided to change
features to a fixed size before graph classification.
The representation results are concatenated by global
average pooling and global max pooling, which is
shown as follows:

s=
1

N

N∑
i=1

xi∥
N
max
i=1

xi, (5)

whereN is the number of nodes,Xi represents the fea-
ture value of the ith node and ∥ is a concatenation
operator.

3.3. Domain adversarial model based on the graph
Due to individual differences in emotion, the general-
ization of the emotion recognitionmodel usually does
not perform well. To improve the generalization per-
formance of our model across subjects, we propose a
method of domain adversarial based on the graph.

The main advantage of our method is to reduce
the computational complexity significantly. Differ-
ent to the work in [3], we apply the domain
adversarial model to the graph after self-attention
pooling instead of nodes since this graph after pooling
contains the crucial features obtained by extraction
from GCN. A detailed comparison is provided in
section 4.6.
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The core of domain adversarial based on the
graph is the domain classifier. The input data of
the domain adversarial based on the graph are from
the readout layer, including the source and target
domains. In the training process, the mixed samples
from the source domain with labels and the tar-
get domain without labels are put into the domain
adversarialmodel. To achieve effective domainmigra-
tion, the domain classifier in this model is not expec-
ted to successfully distinguish between the source
domain data and the target domain data. During
training, the domain classifier discriminates between
the source and the target domains, and non-crucial
features of the source domain and target are removed.

For the loss function that needs to be optim-
ized, we select XS, XT ⊆ GCNfeature ∈ RG×d from
GCNferture, where XS is the source domain data, XT is
the target domain data,G is the number of graphs and
d is the dimension of the graph data. The data label
belonging to the source domain is set to 0 and the data
label belonging to the target domain is set to 1. It is
converted to a one-hot form as YSi = [1,0], YTi = [0,1]
and then the cross entropy (CE) is employed to con-
struct the following:

ED =H
(
YS,qS

)
+H

(
YT,qT

)
=−

(
GT∑
i=1

C∑
j=1

YSi (xj)log(qi(xj))

+
GS∑
i=1

C∑
j=1

YTi (xj)log
(
qi(xj)

))
. (6)

The classifier in the domain adversarial model
based on the graph is a three-layer fully connec-
ted neural network for emotion recognition, which
attempts to find the correct emotion based on features
from graph self-attention pooling.

3.4. Defense against label noise
The label noise introduced by stimuli experiments
is a common issue in emotion recognition. Emo-
tion recognition labels are typically assigned based
on the type of stimuli material. This assignment may
be harmful if subjects exhibit unexpected physiolo-
gical reactions. For example, if the video material
is labeled as happy, so will the corresponding EEG
data. However, the person watching this video may
be feeling something other than happiness or a mix-
ture of emotions. For example, the subject might not
be completely happy, but he or she will be most con-
tent with a small number of neutral feelings. This
noise has a negative impact on emotion recognition
performance.

To address this issue, we start with the funda-
mental premise that an induced experiment will not
result in opposite feelings, such as the belief that
pleasant stimuli will not result in depressing ones. We
alter each label’s probability distribution according

to [3]. Based on a prior probability distribution, the
label Y is mapped into a new label Ŷ. For instance,
SEED, an emotion EEG data set, has three categories:
negative, neutral and positive. The following shows
how label Y is translated into Ŷ:

Ŷi =


(1− ϵ,ϵ,0) Yi = 0

(ϵ,1− 2ϵ,ϵ) Yi = 1

(0, ϵ,1− ϵ) Yi = 2

, (7)

where i is the class indices, and 0, 1 and 2 represents
negative, neutral and positive, respectively, and ϵ ∈
[0,1] represents a hyper-parameter controlling the
noise level in the training labels.

Kullback–Leibler (KL) divergence is adopted as
the loss function of the emotion recognition classifier
since it can measure how one probability distribution
is different from another.

DKL(Ŷ∥q) =
N∑
i=1

[Ŷ(xi) log Ŷ(xi)− Ŷ(xi) logq(xi],

(8)

where Ŷ represents the real data, ameasured probabil-
ity distribution. Distribution q(xi) represents instead
a theoretical distribution of the data.

The training process is carried out to minimize
Eall, which is the sum of the emotion recognition loss
(Liy) and the domain classification loss (L

i
d).

Liy(θf,θy) = DKL(Ŷ||q)

Lid(θf,θd) = ED =H(YS,qS)+H(YT,qT)

Eall = Liy(θf,θy)+ Lid(θf,θd)

. (9)

4. Experiments and evaluation

To evaluate ourmodel, we applyDAGAM to two pub-
lic emotion EEG-based data sets: the SJTU Emotion
EEG Dataset (SEED) [7], and an evolution of the ori-
ginal SEED data set (SEED IV) [8].

4.1. Implementation details
In experiments in the two data sets, we set the hyper-
parameters of DAGAM as follows: the number of
GCN layers L is 3; the pooling ratio k used in self-
attention pooling is set to 0.5. The classifier for emo-
tion recognition based on the graph is a three-layer
fully connected neural network. Adam is used as the
model’s gradient descent optimizer with a value of
0.001. We implemented the whole model with PyT-
orch. The model runs on the server with Intel Core
i9-9900K CPU @ 3.60GHz, 32GB memory, 512GB
SSD, and NVIDIA GeForce RTX 3090 running Linux
Ubuntu 18.04.03 LTS.

4.2. Data set instruction
These data sets collect EEG signals from the same
device: an ESI NeuroScan with 62 channel electrodes
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according to the international 10–20 system at a
sampling rate of 1000Hz. The raw EEG signals from
these data sets are preprocessed, and different salient
features are extracted based on previous studies [9].
The detailed information is provided as follows.

4.2.1. SEED and SEED IV
In the SEED, 15 film clips were chosen to evoke three
emotions: positive, neutral and negative. Fifteen sub-
jects participated in the experiment. There were 15
trials for each subject in the experiment. In SEED
IV, 72 film clips were chosen to evoke four kinds of
emotions: happiness, sadness, fear, or neutrality. Fif-
teen subjects were also recruited to participate in this
experiment. Three sessions, including 24 trials, were
performed on different days for each subject. The
raw EEG data were downsampled at 200Hz to facilit-
ate recognition. Then, a bandpass filter with 1–75Hz
was applied to remove the noise and artifacts. In our
experiments, a time-frequency domain feature called
DE [9] was extracted.

h(X) =−
ˆ ∞

∞

1√
2πσ2

ℓ−
(x−µ)2

2σ2

× log
(

1√
2πσ2

ℓ−
(x−µ)2

2σ2

)
dx

=
1

2
log
(
2πℓσ2

)
, (10)

where the time seriesX follows the Gauss distribution
N(µ,σ2).

4.3. Performance analysis
We compare DAGAM with other baseline methods
to comprehensively evaluate our model, including
the SOTA in mean accuracy and STD for SEED
and SEED IV, respectively. The confusion matrix
analysis is provided. Then, the results of the abla-
tion study are presented to pinpoint the crucial ele-
ments. The section ends with a complex computation
comparison.

4.3.1. Subject-independent emotion recognition
We conduct experiments on two data sets (SEED
and SEED IV) using leave-one-out cross-validation
(LOOCV) to evaluate the performance of DAGAM
on subject-independent emotion recognition. The
experimental settings are followed by [3, 25], which
tests our DAGAM on one subject and trains on the
remaining subjects for each fold. LOOCV evaluates
each subject in the data sets. The mean accuracy
(ACC) and STD are compared.

The performance of our DAGAM is shown in
table 1, which lists the comparison between the
DAGAM model and other methods in the subject-
independent in SEED and SEED IV. The compar-
ison includes 19 methods as follows: KLIEP [26],
ULSIF [26], STM [27], SVM [28], TCA [29], SA

Table 1. Comparison of the performance accuracy on
subject-independent emotion recognition in SEED and SEED IV.
The top results are highlighted in bold. ACC/STD(%).

Method SEED SEED IV

KLIEP 45.17/17.76 31.46/9.20
ULSIF 51.18/13.57 32.99/11.05
STM 51.23/14.82 39.39/12.4
SVM 56.73/16.29 37.99/12.52
TCA 63.64/14.88 56.56/13.77
SA 69.00/10.89 64.44/9.46
GFK 71.31/14.09 64.38/11.41
A-LSTM 72.18/10/85 55.03/9.28
T-SVM 72.53/14 —
EEG-GCN 77.30/8.83 —
DANN 79.19/13.14 47.59//10.01
DGCNN 79.95/9.02 52.82/9.23
DAN 83.81/8.56 58.87/8.13
BiDANN-S 84.14/6.87 65.59/10.39
BiHDM 85.40/7.53 69.03/8.66
RGNN 85.3/6.72 73.84/8.02(SOTA)
WGAN-DA 87.07/7.14 —
TDANN 87.90/6.13 —
DOGNN 88.53/5.67(SOTA) 73.55/10.19
DAGAM 92.59/3.21 80.74/4.14

[30], GFK [31], A-LSTM [32], T-SVM [33], EEG-
GCN [34], DANN [4], DAN [18], BiDANN-S [16],
BiHDM [35], RGNN [3], WGAN-DA [6], TDANN
[5], DOGNN [36].

Obviously, our DAGAM performs better than the
other 19 methods, including SOTA, on both SEED
and SEED IV. The DAGAM achieves the highest
accuracy with the lowest STD. This improves the
accuracy of SOTA by 4.06% for SEED and 6.90% for
SEED IV, respectively.

We directly quote emotion recognition results of
other baselines from the work of [25]. Our model
substantially improves the performance and is much
better than others concerning accuracy, but with a
relatively high STD. We have double-checked our
results.

As shown in the experiments mentioned
above, our DAGAM can further improve subject-
independent emotion recognition compared with
other methods. Among the methods compared with
our model, there are two methods that use GNNs:
DGCNN [2] and RGNN [3], and sixmethods that use
domain adversarial training: TDANN [5], WGAN-
DA [6], RGNN [3], DAN [18], BiDANN-S [16],
DANN [4]. No one adopted the attention mechan-
ism. Therefore, we assume that graph self-attention
pooling effectively helps to extract crucial invariable
features and remove irrelevant ones.

To further verify this assumption, we conducted
further experiments. In each round of experiments on
two data sets, we modified the core hyperparameters
of GANNs: top proportion k. Table 2 shows the res-
ults. It can easily be found that the experimental res-
ults have undergone apparent changes, especially on

6
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Table 2. Comparison of the performance accuracy at different top
proportions k on SEED and SEED IV. The top results are
highlighted in bold. ACC/STD(%).

k SEED SEED IV

0.9 87.70/5.25 80.64/3.63
0.8 88.59/4.35 80.18/4.68
0.7 87.56/3.22 80.09/4.55
0.6 88.15/3.60 80.18/4.87
0.5 92.59/3.21 80.74/4.14
0.4 89.57/4.62 79.53/4.71
0.3 88.57/4.02 80.62/6.22
0.2 87.70/3.88 79.72/4.41
0.1 88.15/4.19 80.55/4.13

Table 3. Comparison of the performance accuracy of the models
with or without a global connection, Symbol ‘-’ indicates the
following component is removed, ACC/STD(%).

Method SEED SEED IV

DAGAM 92.59/3.21 80.74/4.14
-global connection 92.19/4.55 80.27/5.25

Table 4. Comparison of the performance accuracy in different σ
on SEED and SEED IV. The top results are highlighted in bold.
ACC/STD(%).

σ SEED SEED IV

1 84.00/3.16 73.05/5.26
2 85.77/3.95 77.31/6.26
3 89.48/4.17 78.51/5.45
4 89.77/3.87 78.98/4.75
5 92.59/3.21 80.74/4.14
6 87.25/3.93 78.51/4.69
7 88.59/4.33 79.72/5.48
8 89.63/3.86 78.61/5.24
9 88.89/3.71 79.72/4.85
10 86.96/5.18 79.25/5.83

SEED, by almost 5%. As a result, graph self-attention
pooling does play a central role in our model.

In order to explore the influence of different
parameters on the model as much as possible, we
conducted a comparative experiment on the global
connection and σ. Table 3 shows the results of the
comparison of the model with global connection
and without connection. The results indicate that the
global connection can slightly improve the perform-
ance of the model.

The effect of different σ on the graph modeling
is shown in table 4. The value is set as five perform-
ing better than others on both SEED and SEED IV,
respectively.

4.4. Confusionmatrix analysis
To provide deep insight into our model for differ-
ent emotions, we provide the confusion matrix for
SEED and SEED IV. As shown in figure 2, these con-
fusion matrices are represented in percentage with
rows normalized.

For SEED, as shown in figure 2(a), ourmodel per-
forms with a high level of accuracy for all emotions.
While it performs much better on neutral emotions

than others, it is not very sensitive to negative emo-
tions. Nearly 8% of negative emotions are misrecog-
nized as neutral and positive emotions.

For SEED IV, as shown in figure 2(b), our model
performs at around 80% for all four categorized emo-
tions. It is good at distinguishing happiness but weak
in recognizing neutral emotions. 8.15% of neutral
emotions are categorized as sadness by mistake, and
7.04% and 6.30% of them are recognized as fear and
happiness, respectively.

Overall, the model shows a fairly high level of
emotion recognition.

4.5. Ablation study
DAGAM mainly adopts three methods in different
parts of the model to tackle individual differences.
Graph self-attention pooling is adopted in the fea-
ture extraction phase to extract crucial features based
on biological topology. In the phase of graph clas-
sification, KL divergence is adopted to handle inac-
curate emotion labels, which can quantify differences
between the probability distribution of the training
set and the testing set. In the training phase, domain
adversarial training based on the graph is an attempt
to solve the problem of the same labels with different
distributions, that is, domain adaptation.

To study the effects of the three core parts in the
model, we conducted an ablation study (three fur-
ther experiments) to verify them. In the first exper-
iment, we disabled the domain adversarial part and
only used other parts to recognize emotions to study
the effects of domain adversarial training based on
the graph. In the second experiment, we replaced
the KL divergence with the another loss function:
CE, to investigate the effect of KL divergence. In the
third experiment, we attempted to discover the effects
of graph self-attention pooling by disabling domain
adversarial training and replacing KL divergence.

The results are shown in table 5. The KL diver-
gence has a significant impact on the performance
of the model, especially on SEED. Without the KL
divergence, the accuracy of SEED drops by nearly
5.78%. The domain adversarial training based on the
graph also affects the performance. Without domain
adversarial training based on the graph, the accur-
acy decreases. We find that only domain adversarial
training is applied, and its accuracy does not have a
significant impact. If only graph self-attention pool-
ing is used, it retains good accuracy on these two data
sets. This result again verifies our previous assump-
tion that graph self-attention pooling is a crucial part
of our model.

4.6. Computational complexity comparison
As noted in section 3.3, our approach can significantly
lower the computational complexity when compared
to the work of [3]. It is dependent on two key factors.
The first is to use self-attention pooling to pick out key
features; it drastically reduces the parameters before
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Figure 2. Confusion matrices of the subject-independent EEG emotion recognition results using our DAGAM on SEED and
SEED IV. (a) Confusion matrix of SEED; (b) confusion matrix of SEED IV.

Table 5. Ablation studies for subject-independent classification
accuracy (mean/STD) on SEED, SEED IV, Symbol ‘-’ indicates the
following component is removed. ACC/STD(%).

Method SEED SEED IV

DAGAM 92.59/3.21 80.74/4.14
-Domain adversarial
training

87.55/5.18 78.33/4.64

-KL divergence 86.81/3.48 77.50/5.17
-Domain adversarial
training and KL
divergence

88.00/3.70 79.53/4.71

classifier input. The other is that the entire graph is
applied to the domain adversarial training rather than
just the node [3]. A computational complexity com-
parison is provided as follows. O(G) represents the
computational complexity of our work.

O(G) = O
(
GraphNum

(
HiddenDim

× 3× 2×HiddenDim+HiddenDim

× HiddenDim

2
+
HiddenDim

2
× 2
))

.

(11)

O(N) of [3] is as follows:

O(N) = O

(
NodeNum×GraphNum

(
HiddenDim

× 3×HiddenDim+HiddenDim

× HiddenDim

2
+
HiddenDim

2
× 2

))
.

(12)

We compared O(G) with O(N) as follows:

O(N)

O(G)
=
7×NodeNum

13
+

12

217×HiddenDim+ 14
.

(13)

Table 6. Comparison of the performance of training time(s).

Method Time

DAGAM 0.0208
RGNN 0.0561

From formula (13), it is evident that there is still
a difference in the computational cost of 7×NodeNum13
times evenwhen the hidden layer dimension increases
to infinity, causing the second portion to approach
zero. When there are 62 nodes (due to the EEG cap
with 62 electrodes used in SEED and SEED IV), the
node-domain adversarial computational complexity
is approximately 33 times greater than the graph-
domain adversarial nodes (our method).

To evaluate the performance of DAGAM in prac-
tical applications, we record the average training time
for each epoch of our algorithm and the compar-
ison algorithm. Table 6 indicates that our model runs
nearly three times faster than [3]. However, there is a
difference in the theoretical value. According to the
analysis, we found that the main reason is the dif-
ference in the implementation method. In work [3,]
implementation is based on the framework of PYG,
which provides better optimization of the imple-
mentation process, while wemanually implement the
core GCN part based on the Numpy. This indicates
the direction for our future work.

4.7. Brain region analysis through visualization
Wevisualized connections in order to study the role of
various brain regions in different emotions. Since our
model adopts SAGpooling, it is difficult to directly
visualize themodel based on electrodes.We use LIME
[37] to solve this problem. The results are shown in
figure 3.

We find that the asymmetry in frontal and pari-
etal EEG activity may reflect alterations in different

8
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Figure 3.Heat map learned from DAGAM according to the LIME method: (a) positive; (b) neutral; (c) negative.

emotions. This supports the previous research [7, 20,
21] that the asymmetry in EEG activity between the
left and right hemispheres is a crucial feature for emo-
tion recognition.

5. Conclusion

This study contributes to the growing area of EEG-
based subject-independent emotion recognition by
proposing a DAGAM. DAGAM is powerful for learn-
ing the relationships between EEG channels based on
graph pooling using self-attention pooling benefits to
extract salient features for the emotion recognition
task. Domain adversarial training based on the graph
contributes significantly to tackling the cross-subject
EEG variation issue. Extensive experiments on two
public data sets (SEED and SEED IV) show that the
performance of our model achieves SOTA, providing
the highest accuracy and lowest STD than other com-
petitive baselines with low computational complex-
ity. In future work, we will continue to move along
the line of graph models.
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