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Abstract—Confusion, as an affective state, has been proved
beneficial for learning, although this emotion is always men-
tioned as negative affect. Confusion causes the learner to
solve the problem and overcome difficulties in order to restore
the cognitive equilibrium. Once the confusion is successfully
resolved, a deeper learning is generated. Therefore, quantifying
and visualizing the confusion that occurs in learning as well
as intervening has gained great interest by researchers. Among
these researches, triggering confusion precisely and detecting it
is the critical step and underlies other studies. In this paper, we
explored the induction of confusion states and the feasibility
of detecting confusion using EEG as a first step towards
an EEG-based Brain Computer Interface for monitoring the
confusion and intervening in the learning. 16 participants
EEG data were recorded and used. Our experiment design
to induce confusion was based on tests of Raven’s Standard
Progressive Matrices. Each confusing and not-confusing test
item was presented during 15 seconds and the raw EEG data
was collected via Emotiv headset. To detect the confusion
emotion in learning, we propose an end-to-end EEG analysis
method. End-to-end classification of Deep Learning in Machine
Learning has revolutionized computer vision, which has gained
interest to adopt this method to EEG analysis. The result of
this preliminary study was promising, which showed a 71.36%
accuracy in classifying users’ confused and unconfused states
when they are inferring the rules in the tests.

I. INTRODUCTION

Emotions that are generated during learning, sharing the
neural circuitry with cognitive activities, impact the learning
positively or negatively. Among these emotions, confusion
occurs commonly during learning and has been proved
beneficial for learning [1]. Confusion refers to the state that
is triggered when learners are confronted with information
that is inconsistent with existing knowledge and learners are
uncertain about how to proceed [2]. This cognitive disequi-
librium occurs when an individual confronts with impasses,
the frequency of which is not low. Once the confusion is
successfully resolved, the learning and comprehension at a
deep level is generated.

In a conventional class, a human teacher could easily
capture the confused state of students and help them resolve
the confusion via adjusting the contents and examples of

This research was supported by the National Natural Science Foundation
of China (61702417, 61703259), the Shaanxi Natural Science Foundation
(2017JM6097).

Y. Zhou (Corresponding author) and S. Li (Shiqian Li) are with the
School of Education, Shaanxi Normal University, Xi’an, 710062, P.R.China.
Corresponding author’s phone: +86-29-85308047, fax: +86-29-85308047 (e-
mail: zhouyun@snnu.edu.cn, qc@snnu.edu.cn)

T. Xu and S. Li (Shaoqi Li) are with the School of Software and
Microelectronics, Northwestern Polytechnical University, 127 West Youyi
Road, Xi’an, Shaanxi 710072, P.R.China. (e-mail: xutao@nwpu.edu.cn,
lsqylxq@163.com)

the lecture. Current online courses platforms or Intelligent
Tutoring Systems show the popularity, however, they are
far away from detecting students’ cognitive and affective
states, delivering effective pedagogical strategies and offering
adaptive instruction.

In recent years, quantifying and visualizing the confusion
that occurs in learning as well as intervening have gained
great interest by researchers [3][2]. Among these researches,
measuring confusion is the critical step and underlies other
research work. The ways that have been used to measure
affective states in digital environments could be mainly
categorized into three ways according to the data acquisition
method: questionnaire-based measures, physical measures
and physiological measures. Questionnaire-based measures
are composed of self-reported measures and observers’ re-
ports, which are subjective measures and used the most
commonly. Many verbal scales have been designed to assess
the cognitive or affective states. Besides, Self-Assessment
Manikin scales are pictorial rating scales, which are widely
used to measure emotions on the valence and arousal dimen-
sions [4]. Physical measures and physiological measures have
been investigated increasingly due to the objectivity and the
ability of real-time monitoring. Physical measures include the
detection of the facial expression [5], gestures and postures
[6], the interaction analysis, etc. Compared with physical
measures, physiological measures are direct and could assess
the internal features of an individual. With regard to brain
activities, Electroencephalograph (EEG), functional Near In-
frared (fNIR), and functional Magnetic Resonance Imaging
(fMRI) have been used to monitor variation and trends of
emotions.

Commercial EEG data acquisition devices have a relatively
cheaper price and EEG has a good temporal resolution,
which are appropriate for being applied in the education. The
classification methods of current EEG-based Brain Computer
Interfaces for emotion recognition systems have been based
on either machine learning algorithms like Support Vector
Machine [7], or the estimation of time-varying features [8].
Filter bank common spatial pattern (FBCSP) is one of the
classical methods to analyze EEG data [9]. The main idea
is: the first getting different frequency bands by separating
raw EEG data signal, then extracting features from frequency
bands, and finally classifying based on these features. Those
methods that are employed to process EEG data require the
stages of artifacts removal, feature extraction, and feature
selection. End-to-end deep learning [10] method can take
all these multiple stages, and replace them usually with just
a single neural network. It reduces the process of feature
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extraction. According to learning from raw EEG data, it can
map them directly to objectives.

In this work, we investigated the induction of confusion
and the feasibility of detecting confusion using EEG as a
first step towards an EEG-based Brain Computer Interface for
monitoring the confusion and intervening in the learning. Our
experiment design to induce confusion was based on Raven’s
Standard Progressive Matrices, including 16 participants’
effective data. Each confusing and not-confusing test item
was presented during 15 seconds and the raw EEG data
was collected via Emotiv headset. An end-to-end classifi-
cation method has been applied. Results from our work
were promising, showing 71.36% accuracy in classifying
users’ confused and unconfused states, which achieves our
expectations.

II. CONFUSION RECOGNITION SYSTEM ARCHITECTURE
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Fig. 1. The architecture of EEG-based confusion recognition system.

As shown in Figure 1, we have proposed the architecture
of EEG based confusion recognition system. This system
contains three steps: raw EEG signals recording, data pre-
processing, and classification.

In this work, Emotiv Epoc+ is employed to collect raw
EEG data related to different confusion states, which is a
commercial EEG device to measure human brain’s activities,
and cognitive and emotional states designed by Emotiv.
The Emotiv Epoc+ is a portable wireless acquisition system
connecting to a computer via a USB dongle and recording
raw EEG data via a headset. The neuro-headset features 14
channels (AF3, F7, F3, FC5, T7, P7, O1, AF4, F4, F8, FC6,
T8, P8, and O2) plus 2 references (A1 and A2) based on
the 10-20 format. Epoc+ is low-cost and ubiquitous, which
has been showed the feasibility among researches to access
cognitive activities [11]. All 14 electrodes were used and the
data was collected.

With regard to preprocessing, we cut the data into one
piece of 15 seconds and labeled with actual labels. We
first assigned labels to each stimulus before the experiment
through a pilot test as stated below, in order to well-organize

the experiment. In our experiment, after viewing test pictures,
we asked participants to report their confusion states for every
picture and obtained the actual labels for training and testing
the classifier. This is to avoid the situation that the stimulus
materials were supposed to be confusing but participants
found not confusing and vice versa.

The data processing is mainly based on the end-to-end
deep learning algorithm. Although the commercial devices
are portable, the signals obtained from such devices are not as
precise as that of the medical EEG acquisition devices. Thus,
the traditional method cannot easily extract valid features to
classify. Since the event lasts a period of time, under the same
experiment condition, we assumed that the noises are consis-
tent with the similar probability distribution. Benefiting from
deep learning [10][12], we adopted a convolutional neural
network (CNN) to detect confusion state directly. Compared
with traditional methods, this method choses raw data from
different channels as input directly, which reduces the process
of transforming the EEG raw data into the standard frequency
bands and the process of extracting features. It can classify
whether the individuals are confused or not confused directly.
Our method provides an alternative method to handle EEG
data with low precision. Figure 2 shows the main structure
of this method. The core of this method is CNN. It consists
of three layers: two convolutional and pooling layers, and
one full-connected layer. Since Emotiv has 14 EEG channels
and scanning sequence is roughly 200 times per second, we
converted one second to the matrix of 14x14x14 as input data.
The labeled data in our experiments indicates the confusion
states, that is, confusing or not confusing. Accordingly, the
implementation of machine learning approach based system
typically includes two phases: training and testing.

III. EXPERIMENT DESIGN

In this section, we present the experiment design, including
the participants’ demography, the design of stimulus and the
procedure of the experiment.

A. Participants

The main procedure in this experiment is presented as
follows. The tester greeted the participant, and introduced
this study and explained the procedure briefly. Then the
tester asked for the permission of using the recorded EEG
data for the research purpose and the data obtained in the
questionnaire. After the participant watching stimulus, he
or she was asked to fill out questionnaire and gave the
explanation of his or her choices.

Seventeen college students participated in this experiment,
while one’s data was ejected due to an unexpected disrup-
tion occurring when this participant watching the stimulus.
Therefore, sixteen participants’ data were effective and kept
to process. In total, we had 2 male and 14 female participants.
Their ages were distributed between 23 and 34, with mean
of 24.69 (SD = 2.65 years). Most of the participants were
postgraduates and studying in the university.
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Fig. 2. The main structure of end-to-end learning model.
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Fig. 3. Experiment design. (a) An example problem at a hard level similar
to those from the Raven’s Matrices family of tests to induce confusion. (b)
An example problem at an easy level similar to those from the Raven’s
Matrices family of tests to induce not-confusing mind state. (c) The user
is watching the picture stimulus wearing Emotiv Epoc+ headset. (d) Latin
Square for counterbalancing the learning effects.
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Fig. 4. The procedure of the experiment.

B. Confusion Induction and Stimulus Design

In the study of confusion detection, confusion induction
is a daunting task. The effectiveness of confusion induction
determines the success of classification. We adopt the tests
of Raven’s Matrices to induce confusion but change the
presenting order to meet the requirement of our experiment.
Raven’s Standard Progressive Matrices (Raven’s Matrices or
RPM) is a nonverbal group test typically used in educational
settings to measure the taker’s abstract reasoning ability [13],
which is administered to the groups ranging from 5-year-olds
to the elderly. The original test of Raven’s Matrices consists
of increasingly difficult pattern matching tasks, which has
little dependency on language abilities.

For reasoning test, the levels of confusion would decrease
by the longer interval, while the confusion state is susceptible
to be triggered in a short interval. Thus, before the actual
experiment, we did a pilot test to identify whether the Raven’s
test pictures can induce confused or unconfused states, and
determine the interval of presentation of each picture as
15 seconds. When presenting each picture 15 seconds, we
assumed that half of 40 the pictures which are hard to
deduce would be confusing and the rest of them which are
easy to deduce would be not-confusing. Then we assigned
the labels to these stimuli, which were divided as into two
groups: confusing picture group (named as A) and not-
confusing group (named as B). A within-subjects design was
employed, in which all participants watched 20 pre-assigned
confusing (see Figure 3(a)) and 20 not-confusing pictures
(see Figure 3(b)). The order of two groups that was presented
for participants was counterbalanced with a 2×2 balanced
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Latin square [14]. In each test item, the subject was asked to
identify the missing element that completes a pattern in 15
seconds. The pattern that was used in this experiment was in
the form of a 3×3 or 2×2 matrix.

C. Procedure

In the task, each participant was asked to watch the
stimulus presented by E-Prime and fill out the questionnaire
after finishing watching (see Figure 4). The welcome picture
was present in 5 seconds, followed by a counting-down of
3 seconds, which reminded the participant to be ready for
the test. When performing the reasoning task, the participant
was instructed to keep the still except blinking and open
the eyes to view each picture presented and deducted the
pattern should be matched. In this process, the EEG data
was recorded (see Figure 4) via one laptop and the stimulus
was presented via another computer, and both of these two
systems logged the system time and events used for data-
preprocessing. After the reasoning task, a questionnaire was
asked to fill out, including participants’ basic information,
their responses to reasoning test, and their self-assessment of
confusion for each test.

Fig. 5. The training loss.

D. Results and Discussion

We employed TensorFlow to build our end-to-end learning
model for human confusion analysis. It was applied on the
experiment environment is as follows: Operation System:
Ubuntu 17.10, Graphics Card: GeForce GTX 970 and Mem-
ory: 15.6 GB. The input data is from the raw EEG data
obtaining from 16 subjects as stated above. Each subject
has been tested by 40 independent test questions, including
confusing and not-confusing picture questions. In total, 640
(16×40) pieces of data were used for building and testing the
classifier. We randomly chose 30% of samples as the test set.
The rest of samples, namely, 70% of samples were training
test. Learning rate is set as 0.00001, and the Adam [15] is
set as the optimizer. The training loss is presented as shown
in Figure 5. According to the training, our method can get
the accuracy of 71.36% by only taking from the raw EEG
data, which achieves our expectations.

IV. CONCLUSION AND FUTURE WORK

This study is motivated due to missing studies on the
triggering and detecting confusion in learning environment.
In this preliminary work, we design and propose a system
to classify the confused state and unconfused state using
EEG-based wireless headset Emotiv Epoc+. The current
system is able to record EEG signals and classify levels
of confusion with an accuracy of 71.36% when individuals
doing reasoning tests. Based on the dynamics of learning
affect model revolving around confusion, when the level of
confusion reaches a high level, the frustration and boredom
will occur. Therefore, in our near future work, we will
investigate a fine-grained multilevel confusion induction and
classification, which will be applied in the digital learning
system.
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